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Abstract

Information plays a crucial role in mechanism design problems. A

potential complication is that buyers may be inattentive, and so their

information may endogenously and flexibly depend on the offered mech-

anism. I show that it is without loss of generality to consider contour

mechanisms, which comprise triplets of allocation probabilities, prices,

and beliefs, and are uniquely determined by a single such point. The

mechanism design problem then reduces to Bayesian persuasion along

the optimal contour. This reduction has significant implications for

both the implementation of the optimal mechanism and the revenues

that can be achieved.
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1 Introduction

The question of optimal sales mechanisms has been widely studied. Cru-

cially, the results of such analyses often depend on the assumption that the

values that the buyers assign to the item for sale are exogenous. Yet in many

cases, the factors that go into the evaluation of the item are manifold and

complex. Starting with Sims (2003), a growing literature has focused on the

impact of inattention regarding such factor. The potential buyer may there-

fore not immediately know how much the item for sale is worth to her: she

may be inattentive regarding the true value. Instead, she must undertake some

costly investigation to determine it. This inattentiveness must be accounted

for by the seller when he sets the trading mechanism that buyers face, as the

mechanism will affect both the information that the buyers acquire, and the

eventual purchasing decisions.

The fact that there are many features that determine the value of an item

for the buyer implies that uncertainty over these features enables the buyer to

select over a wide range of information acquisition strategies. In particular,

the buyer can decide not only how much information to acquire, but also what

kind of information. Thus, the potential strategies will not automatically be

completely ordered by the informativeness of the signals associated with them,

but will instead be chosen flexibly in response to the mechanism.

I model this environment as follows. First, the seller determines the (sym-

metric) mechanism that the buyers face, with the aim of maximizing revenue.

This ensures that the rules of the mechanism are known to the buyers prior

their participation therein. One can think of this as applying to retail pricing

or to auction houses, whose operating procedures are generally known to po-

tential buyers. Upon seeing the mechanism, the buyers then choose a signal

structure, which will determine the joint distribution of signal realizations and

possible ex-post valuations. Unlike previous work in mechanism design,1 I as-

sume that information can be acquired flexibly, i.e. that any information is

possible to acquire, as long as it satisfies Bayes’ rule, at a cost that is increas-

1See Section 7 for a discussion of the related literature.
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ing in the Blackwell order. After observing the signal realization, the buyers

then decide which option in the menu to choose, if any.

The ability of the buyers to flexibly acquire information has several sig-

nificant implications. First, it severely limits what the seller can effectively

implement. In standard mechanism design, the revelation principle (Myerson,

1981) ensures that it is without loss to look at direct mechanisms, in which the

buyer tells the seller her value for the item, and the seller gives a particular

outcome. As a result, any monotone mechanism, in which the probability of

sale is increasing in the buyer’s value, would be implementable for appropriate

prices. While the revelation principle is technically still valid here ex interim

(as any mechanism can be expressed via direct revelation), this restriction is

not sufficient here: not only the distribution, but even the support of the in-

terim values is endogenous when the buyers can acquire information flexibly.

Thus even if the mechanism were incentive compatible ex interim, it would not

necessarily be so ex ante: the buyer could deviate to a different information ac-

quisition strategy, which would eliminate some of these (interim) values from

the support. This makes it insufficient to merely consider reported interim

values when evaluating the incentive compatibility of mechanisms due to the

additional ex-ante constraints.

As a consequence, I show that the set of outcomes that can be implemented

by mechanisms is much narrower. In particular, if one knows that a particular

triplet of (a) posterior beliefs, (b) probability of receiving the item, and (c)

payments is in the support of the choice of the buyer, then the mechanism is

effectively fully determined. That is, one can pin down exactly what payments

and beliefs must occur at any other probability of receiving the item. The only

remaining leeway for the seller is to determine the optimal distribution over

such triplets, while respecting Bayes’ rule. In effect, the seller’s problem then

reduces to one of Bayesian persuasion (Aumann and Maschler, 1995; Kamenica

and Gentzkow, 2011).

When choosing this optimal distribution, the seller faces three major trade-

offs. By having the buyer acquire information that leads to higher beliefs, the

seller can extract more rents, as the buyer will conditionally value the item
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more. On the other hand, by Bayes’ rule, high interim expected values occur

with low probabilities, and so even if such a posterior were to lead to higher

rents, its low probability of realization may not justify it. Lastly, the seller

would like to extract rents from a given belief. However, the more rent is

extracted, the weaker the power of the incentives to induce information acqui-

sition. As the buyer cannot acquire the object with probability greater than

1, this prevents sufficient incentives for the buyer to acquire information that

would lead to posteriors with high interim values.

Since the tradeoffs with flexible information acquisition are different, the

form of the optimal mechanism may be different as well. In standard mech-

anism design (Myerson, 1981), as with inflexible information acquisition (e.g.

Shi, 2012), the optimal mechanism takes the form of a posted price with one

buyer, and a second-price auction with a reserve price with multiple buyers.

For many cost functions for flexible information acquisition, however, this will

no longer be the case. Nevertheless, I provide sufficient conditions to guarantee

that the optimal mechanisms take these respective forms.

Yet even when the results go through, the optimal reserve prices and rev-

enues differ from previous results. For instance, as the number of buyers goes

to infinity (Theorem 9), a second-price auction is indeed optimal, but with a

reserve price of 0 being strictly better than any other one. Moreover, while

normally an infinite number of buyers implies that revenue converges to the

top of the distribution of ex-post values, the incentive to acquire information

vanishes as well, and so the distribution of interim expected values converges

to the point mass at the prior. This leads to a precise balance between the

two effects, and so the interim expected value of the winner of the auction can

be precisely calculated at a value between the prior expected value and the

highest possible ex-interim value.

Lastly, the endogeneity of the interim distribution of the buyer’s values

affects the ability of the seller to extract revenue (Remarks 2 and 3). While

with inflexible information acquisition, he may want to change the mechanism

for a given interim distribution in order to induce a particular information ac-

quisition strategy, the result here is even stronger: even for a given mechanism
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(that is, probability of sale for each interim value in the distribution), the rev-

enue is lower. This is because the seller must not just defend against choosing

a different quantity of information, but against different interim values as well,

even if they occur with probability 0. This involves providing enough surplus

at a given interim value to discourage such deviations. By contrast, without

flexible information acquisition, there is no difference in revenue extraction

whether or not the information of the buyer is endogenous.

Beyond the differences in the characterizations of the optimal mechanisms,

the paper also contributes to the growing literature on rational inattention,

which use models of flexible information acquisition to model inattentive be-

havior (Caplin and Dean, 2013, 2015; Matejka and McKay, 2015). To that

end, the techniques developed here may be useful in other environments with

rationally inattentive agents. This is especially so for other principal-agent

problems besides optimal auctions.

The remainder of the paper is organized as follows. Section 2 provides a

motivating example of the complications arising from information acquisition

in determining what mechanisms are optimal, or can even be implemented.

Section 3 presents the model of mechanism design and information acquisi-

tion, as well as some preliminary results for a sufficient class of mechanisms.

Section 4 then presents necessary and sufficient conditions for a mechanism

to be implementable. Section 5 discusses optimal single-buyer mechanism de-

sign by means of Bayesian persuasion. Section 6 uses the techniques of the

previous section for applications, including the discussion of the posted-price

mechanism. Section 7 then explores optimal mechanism design with multi-

ple buyers. Section 8 discusses connections to related literature. Section 9

concludes.

2 A Motivating Example

Consider the case of a single buyer (she) who values the item either at 0 or

at 6. Neither the buyer nor the seller (he) starts with any further information
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about the value, though they share a common prior that each value is equally

likely. However, the buyer can acquire further information about her value at

a cost proportional to the expected entropy reduction, where the formula for

entropy in this case, as a function of belief µ, is

H(µ) ≡ µ({0}) ln(µ({0})) + µ({6}) ln(µ({6}))

Thus, given a menu of options, the buyer will acquire information about her

value, and then choose the option that maximizes her conditional expected

utility based on her signal.

Normally, when solving for optimal sales mechanisms, it is without loss of

generality to restrict to direct revelation mechanisms (Myerson, 1981). That

is, the buyer reports her type to the seller, who offers a probability of sale, as

well as a transfer (price), as a function thereof. This approach is complicated

here, though, by the fact that the buyer’s belief about her value is endogenous :

the distribution of values, as estimated by the buyer’s posterior beliefs, will

depend on which mechanism is offered.

Suppose, for instance, that the seller believes that the buyer will acquire

no information. Thus, he believes that she will believe that her expected value

is 3 with probability 1. If one ignores information acquisition, the optimal

mechanism is to offer to sell the item with probability 1 at a price of 3. How-

ever, if he were to do so, the buyer would have an incentive to change their

information acquisition strategy. Consider, for instance, the alternative infor-

mation acquisition in which, at one posterior, the value is believed to be 6

with probability 0.5 + ε, and at the other, is believed to be 6 with probability

0.5 − ε. Thus the buyer will purchase given the first signal realization, and

refrain from doing so given the latter. The gain in expected utility from this

change in strategy is 1
2
ε, while the loss from the increase in information costs

is

ln(0.5)− 2[
1

2
(0.5 + ε) ln(0.5 + ε) +

1

2
(0.5− ε) ln(0.5− ε)]

Dividing by ε and taking the limit as ε → 0 yields a marginal gain of 1
2
, and

a marginal loss of 0. Hence for small enough ε, this alternative strategy is an
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improvement, and so the seller could not implement such an outcome with a

mechanism.

Suppose instead that the seller believes that the buyer will acquire a signal

whose realizations yield expected values of 5 and 1, each with probability 1
2
.

If this signal were exogenous, it would be optimal to offer to sell the item

with probability 1 at a price of 5. Yet the buyer, when faced with such a

mechanism, would instead be better off choosing to acquire no information,

thereby saving on the information acquisition costs, while losing nothing from

the surplus from purchasing, which was 0 anyway.

In order to implement these two posterior expected values, the buyer must

not be able to improve their payoff via an alternative signal. Suppose that the

seller will not sell with any probability conditional on the posterior expected

value of 1, and that he sells with probability x and charges t conditional on

the posterior expected value of 5. Let the posterior probabilities of having a

value of 6 given expected values of 5 and 1 be µH and µL, respectively. This

means that by Bayes’ rule, 5
6

and 1
6

must be the respective values that solve

the problem

max
µH ,µL∈[0,1]

[6xµH − t](
0.5− µL
µH − µL

) (1)

This yields the requisite values if and only if x = 1
6

ln(25) ≈ 0.536 and

t = ln(5) ≈ 1.609. Thus there is only one possible way to implement these

posteriors, given the offer of x = 0 to µL. Indeed, as will be shown later in

the paper, this holds more generally: given a description of what happens at

a single posterior (here, µL), there will be (at most) a unique offer that the

seller can make to induce any other posterior (if at all).

What would happen if, say, the seller were to increase x to 0.6, while

continuing to try to implement the posterior µL = 1
6

as before? In order to

incentivize this, the seller would naturally need to increase t: receiving the

item with higher probability should cost more. In order to solve (1), one then

needs µH ≈ 0.880 and t ≈ 1.936.

One can already see the three major tradeoffs that were mentioned in the

introduction. By offering the item with higher probability, the seller changes
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the incentive to acquire information, such that the buyer will now choose a

posterior belief with a higher expected value of about 5.28. This allows the

him to extract more rents for two reasons: naturally, if the buyer receives the

item with higher probability, she will be willing to pay more. In addition, the

willingness to pay for each point of additional probability of receiving the item

goes up, due to the higher posterior expected value: the average increase in

payoff from this increase in x is ∆t
∆x
≈ 5.15, while at the original µH , t/x = 3.

At the same time, the probability of receiving a high posterior goes down:

while originally the chance of receiving µH was 0.5, it is now approximately

0.467. Thus the probability that the seller receives a high payoff decreases.

To fully derive the optimal mechanism in this environment, one needs to

understand exactly what the seller can implement, and then what techniques

can be used to optimize over the set of such mechanisms. I do so in the next

three sections.

3 Preliminaries

Throughout, I restrict attention to symmetric mechanisms and strategies

across all N buyers, and so generally do not use subscripts to distinguish

buyers.2 I therefore analyze both the single and multiple buyer cases together

in Sections 3 and 4, with the necessary adaptations for the full analysis of the

multiple buyers case introduced in Section 7.

Each buyer (B) has ex-post type (value) θ ∈ Θ, where Θ ⊂ R is of finite

size K. Given a probability of receiving the item x and transfers t, the seller’s

ex-post payoff is uS(x, t) = t, while the buyer’s is uB(x, t, θ) = xθ − t, i.e. the

buyer is risk-neutral.

Before presenting the formal model, I describe the timing of the model.

First, the seller offers a mechanismM. Next, given the mechanism, the buyer

will acquire information about their type. The signal is then realized, giving

2The sole exception is in the proof of Lemma 1, a preliminary result on the class of
mechanisms that need be considered.
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the buyer a posterior belief. Once all information has been acquired, the buyer

chooses a strategy to play in the mechanism, which in equilibrium will lead to

the buyer receiving the item with some probability x and paying some transfer

t given her posterior.

Given a mechanism, the buyer responds by first acquiring information

about the state. The buyer and seller share a common prior µ0. The buyer

can flexibly choose her information via some signal structure (π,S), where s

is a signal realization, and π(s|θ) is the probability that s is realized. Be-

liefs are then updated via Bayes’ rule. This yields a distribution of posteriors

τ ∈ ∆(∆(Θ)) such that
∫
µdτ(µ) = µ0. Note that flexibility implies that τ is

feasible as long as this equality is satisfied. The cost of information acquisition

is given by the expected difference in a posterior-separable cost function c(τ),

defined by the measure of uncertainty3 H(µ). Thus, given distribution τ ,

c(τ) = H(µ0)− Eτ [H(µ)]

where H is strongly concave4 and twice Lipschitz continuously differentiable

on any compact set of interior beliefs µ, i.e. µ(θ) > 0,∀θ. Assume that

the slope of H as µ approaches the boundary (i.e. µ(θ) = 0 for some θ) is

sufficiently high so as to make it strictly optimal to choose beliefs bounded

away from the boundary.5 This allows for commonly used functions for H,

such as informational entropy, i.e. H(µ) = −
∑

θ∈Θ µ(θ) lnµ(θ).

To understand this cost function, note that by Bayes’ rule, the beliefs that

the buyer has upon acquiring information form a mean-preserving spread from

the prior belief µ0. Furthermore, acquiring more information in the Blackwell

order will also form a mean-preserving spread. Thus c is well defined for any

3For further discussion of the assumption of the informational cost form, see Appendix
A.

4This is a slightly stronger assumption than strict concavity, as it essentially requires
that the second derivative be bounded away from 0 from below. More formally, there exists
m > 0 such that, letting H(µ) be the Hessian matrix of H(µ), H + mI is negative semi-
definite.

5While this is endogenous, it is possible to provide primitive sufficient conditions to
ensure that this is the case. I discuss this further in Appendix A.
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signal structure that satisfies Bayes’ rule, and is increasing in the Blackwell

order.

As the set of possible mechanisms is potentially very large, it is important

to reduce it to a more tractable class. The natural way to do so is via a form

of the revelation principle (Myerson, 1981), which states that it is without loss

to consider mechanisms in which players report their type. However, the set of

types (in the sense of posterior beliefs) is endogenous, complicating matters.

At the same time, Kamenica and Gentzkow (2011) show that it is without loss

to consider straightforward signals, which are recommendations for actions. I

combine these in a similar manner to Ravid (2020), in the following definition.

Definition 1: A mechanism M uses recommendation strategies if it consists

of the smallest compact set of allocation probabilities X ⊂ [0, 1] (along with

their corresponding transfers t) and, for each state θ ∈ Θ, the buyer has a

probability measure π(·|θ) ∈ ∆(X) such that
∫
X
dπ(x|θ) = 1.

In words, the seller recommends that the buyer acquire information ac-

cording to π, which tells them which choice of x to make. Thus the buyer

does not randomize given her signal realization: there is precisely one choice

of x for each realization. Conversely, by Bayes’ rule, this implies that there

is exactly one signal realization, and hence one posterior belief µ, for each x

offered.

Lemma 1: For every feasible mechanismM, there is an equivalent mechanism

M′ that uses recommendation strategies in which the seller and the buyers

receive the same payoffs as in M.

All proofs are in Appendix B.

Since it is without loss to consider recommendation strategies, one can

write each of these three variables (beliefs, allocation probabilities, and trans-

fers) as functions of each other. Notationally, I use x(µ) to express the alloca-

tion as a function of µ, including what would be chosen if6 µ /∈ supp(τ), t(x)

is the transfer as a function of the allocation, µ(·|x) is the belief given x, and

6This is because the seller must consider what the buyer would do if she were to acquire
information differently.
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t̃(µ) is the transfer as a function of beliefs.

I now formally describe the problem with its individual rationality and

incentive compatibility constraints, given that the interim problem (post-

information acquisition) for the buyer reduces to finding the optimal (x, t)

for each µ ∈ supp(τ). The seller’s objective is thus

max
M,τ

∫
t(x(µ))dτ(µ)

s.t.

∫
µdτ(µ) = µ0

τ ∈ arg max
σ∈∆(∆(Θ))

∫ ∫
[x(µ)θ−t(x(µ))]dµ(θ)dσ(µ)−[H(µ0)−

∫
H(µ)dσ(µ)] (IC−A)

x(µ) ∈ arg max
(x,t(x))∈M

∫
[xθ − t(x)]dµ(θ),∀µ ∈ ∆(Θ) (IC − I)∫ ∫

[x(µ)θ− t(x(µ))]dµ(θ)dτ(µ)− [H(µ0)−
∫
H(µ)dτ(µ)] ≥ 0 (IR−A)∫

[x(µ)θ − t(x(µ))]dµ(θ) ≥ 0,∀µ ∈ supp(τ) (IR− I)

where the first constraint is that the distribution of posteriors is Bayes-plausible,

the second is that the information acquisition strategy of the buyer is ex-ante

optimal, the third is that the choice from the menu is interim optimal, and

the fourth and fifth are ex-ante and interim individual rationality constraints,

respectively.7

While the above constraints are all necessary for the formal description

of the seller’s problem, the use of recommendation strategies allows for the

simplification of the problem. In particular, the (IC-I) and (IR-A) constraints

are redundant.

Lemma 2: The (IC-I) and (IR-A) constraints are implied by (IC-A) and

(IR-I).

7With multiple buyers, there will also be a feasibility constraint that ensures that the
items can be physically allocated with probability between 0 and 1 for any vector of real-
ization of signals. See Section 7.
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We are now ready to move on to the discussion of which recommendation

strategies are implementable.

4 Implementability

In this section, I characterize the set of mechanisms that use recommen-

dation strategies, and illustrate how they can be used for a general theory of

mechanism design. I highlight how the ability of the buyer to acquire infor-

mation restricts the set of such mechanisms that the seller can implement.

The critical issue, as seen in the motivating example, is that the buyer can

deviate not only at the interim stage, but also at the ex-ante stage. The seller

must therefore defend against a larger set of possible deviations. Using this

observation, I then generalize to a sufficient, tractable class of mechanisms.

Assume for now that the individual rationality constraint is satisfied; I

will subsequently return to it. In order for incentive compatibility to be satis-

fied, the buyer must be optimizing, both through information acquisition and

choice of x. As it is without loss to consider mechanisms that use recommen-

dation strategies, small perturbations of the information acquisition strategy

cannot be payoff-improving. Suppose that belief µ(·|x) occurs with probability

τ(µ(·|x)), and so state θ has total probability mass τ(µ(·|x))µ(θ|x) from this

signal realization. Consider the perturbation that increase the probability that

x is recommended by ε, by means of increasing π(x|θ) by ε
µ0(θ)

. By Bayes’ rule,

this perturbation increases the conditional probability of θ given x to µ(θ|x)+ε
1+ε

,

while it correspondingly decreases the conditional probability of other states

θ′ to µ(θ′|x)
1+ε

, where µ(·|x) are the respective conditional probabilities before the

perturbation. By the envelope theorem, the marginal change in the consump-

tion utility to the buyer from the choice of x as ε → 0 is the payoff from x

at state θ, namely, xθ − t(x). This must be balanced against the change in

costs of information acquisition.8 Expressing ∂H
∂µ(θ)

as the partial derivative of

H with respect to the probability of state θ, one can write the change in cost

8It must also be balanced against maintaining Bayes’ rule, as this mass on state θ must
be distributed across signals so as to add to µ0(θ). This will be addressed shortly.
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from marginally changing the mass of θ at this signal as

h(x, θ) ≡ H(µ(·|x)) +
∂H

∂µ(θ)
(µ(·|x))(1− µ(θ|x))−

∑
θ′ 6=θ

∂H

∂µ(θ′)
(µ(·|x))µ(θ′|x)

(2)

To understand (2), the perturbation of the information acquisition strategy

has three effects on the cost from recommending x, as described in the previous

paragraph. First, it makes x more likely, with the associated information cost

term H(µ(·|x)). Second, conditional on x being recommended, it is now more

likely that θ is the actual state, yielding the second term in (2). Lastly, the

other states θ′ 6= θ are now less likely, yielding the third term.

Of course, such a perturbation must be consistent with Bayes’ rule: one

cannot arbitrarily increase π(x|θ) without correspondingly decreasing π(x′|θ)
for some other x′. Thus for a signal to be optimal, the buyer cannot benefit

from such a marginal change in conditional probability from x to x′. It turns

out that this requirement is also sufficient for optimality: due to the convex-

ity of the cost function due to the concavity of H, one can generate a local

improvement from any global improvement.9

Lemma 3: π is optimal for the buyer if and only if

xθ − t(x) + h(x, θ) = x′θ − t(x′) + h(x′, θ) (3)

for all θ ∈ Θ and almost all x, x′ ∈ X with respect to π.

Lemma 3 was established only for x, x′ ∈ X, i.e. the support of the rec-

ommendation strategies. While it was established in Lemma 1 that it was

without loss to offer mechanisms that use recommendation strategies, this

may not be the most tractable way to approach the problem, as it is not clear

what strategies the seller should recommend. To enable a general analysis of

mechanism design with inattentive buyers, it is preferable to establish a class

of mechanisms for which this issue does not apply: one can analyze it without

9This result parallels Lemma 3 in Caplin and Dean (2013). It should be noted that
they also have an inequality for unchosen acts. This is not relevant here, because, as the
mechanism uses recommendation strategies, there are no unchosen acts.
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knowing which strategies are recommended.

One can do so as follows. Given a mechanism M, consider instead a

mechanism M′ = {(x, t(x))} such that x ∈ [0, 1] that induces τ and x as

under M. As such, t(x) is the same as in M when x ∈ X. If M′ is to

induce the same τ as in M, µ(·|x) and t(x) must be defined in such a way

that the buyer does not want to place positive weight on signals that lead to

x′ /∈ X. One can do so by extending the results of Lemma 3 to the rest of

x′ ∈ [0, 1], and assigning beliefs conditional on all such x, even if they end up

being chosen with probability 0 because they were not recommended.

Lemma 4: Suppose that (x∗, t(x∗), µ(·|x∗)) is in the support of the choice

of the buyer. Then there exists a unique extension M′ = {(x, t(x))} and

beliefs µ(·|x) to each x ∈ [0, 1] that satisfies (3). Moreover, any τ such that

supp(τ) ⊂ {µ : ∃x ∈ [0, 1] : µ = µ(·|x)} is then optimal for the buyer given

M′.

Informally, the above result implies that given an initial point (x∗, t(x∗), µ(·|x∗)),
one can uniquely extend the mechanism to a triple of feasible points (x, t(x), µ(·|x))

for all x ∈ [0, 1]. By Lemma 3, we have seen that any distribution τ over

points that satisfy (3) is optimal for the buyer. Thus the buyer is indifferent

between all distributions τ over such points that satisfy Bayes’ rule, as one can

construct a mechanism in recommendation strategies as in Lemma 3 by only

including the points inM′ with µ(·|x) in the support of10 τ . Hence (3), in the

context of Lemma 4, defines an envelope condition that guarantees incentive

compatibility. In the derivation in Appendix B, I present a differentiable law

of motion defining t(x) and µ(·|x).

One can therefore use the envelope condition to derive the entire remainder

of the mechanism from a single point. I therefore present one such derivation,

starting from the point x∗ = 0, which is natural to consider.

Definition 2: The non-participation belief is given by µ ≡ µ(·|x = 0), and

the certain allocation belief is given by µ̄ ≡ µ(·|x = 1).

10This will have implications for optimal mechanism design, which I explore in Section
5.
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Definition 3: A contour mechanism C is given by

C ≡ {(x, t(x), µ(·|x))}

with initial conditions (0, t(0), µ), and (x, t(x), µ(·|x)) subsequently deter-

mined by (3).

Thus, any mechanism M can be represented by a contour mechanism C.
The upshot of this is that the buyer is then incentivized to obey a recommen-

dation strategy corresponding to M, as long as it lies on the same contour.

This means the seller can implement any distribution of his choosing along

the contour, subject to Bayes’ rule, as long as the recommendation satisfies

(3) and hence is optimal for the buyer.

To complete the characterization of implementable mechanisms, one must

discuss the individual rationality constraints. Here, the results do not diverge

much from the standard mechanism design case: the (IR-I) constraint is satis-

fied whenever it is satisfied at x = 0 (i.e. at µ). By revealed preference, since

choosing x = 0 is always an option, the choice of the buyer of something other

than x = 0 implies that it is preferable ex interim, and hence must give non-

negative utility. The results up to now are thus summarized in the following

theorem.

Theorem 1 (Implementability): A mechanism M is implementable in

recommendation strategies if and only if the same strategies can be implemented

by a contour mechanism C such that t(0) ≤ 0.

I now describe and illustrate how the contour mechanisms look in practice.

For some commonly used cost functions, such as entropy-based (Sims, 2003;

Matejka and McKay, 2015) or log-likelihood ratio-based (Morris and Strack,

2017; Pomatto et al., 2019) cost functions, there is always an infinite marginal

cost of acquiring information that sets µ(θ) = 0 for any θ, regardless of the

multiplication of costs by any coefficient κ > 0. This reflects the idea that it

is prohibitively costly to fully rule out any possible type. To compensate for

this, the seller would have to provide an infinite payoff conditional on report-

ing such beliefs, which is obviously suboptimal for the seller. The following
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example provides a description of the functional form of contour mechanisms

for entropy-based costs, which appeared in the motivating example.

Example 1: Suppose that, for some κ > 0,

H(µ) = −κ
∑
θ∈Θ

µ(θ) lnµ(θ)

Then h(x, θ) = −κ lnµ(θ|x), and so by (3), one gets the likelihood ratio con-

dition11

κ ln
µ(θ′|x′)/µ(θ|x′)
µ(θ′|x)/µ(θ|x)

= (x′ − x)(θ′ − θ)

for any pairs x, x′ and θ, θ′. As
∑

θ∈Θ µ(θ|x) = 1, µ(θ|x) is thus pinned down

by µ. Solving for µ(θ|x) then yields

µ(θ|x) =
µ(θ)e

xθ
κ∑

θ′∈Θ µ(θ′)e
xθ′
κ

(4)

Meanwhile, (3) also implies that

t(x)− t(0) = xθ − κ(lnµ(θ|x)− lnµ(θ)) (5)

I illustrate this for Θ = {θ1, θ2, θ3} = {5, 10, 15}, κ = 1, and µ = (0.9, 0.09, 0.01).

In Figure 1(a), I plot the set of beliefs that are along the contour mechanism,

while in Figure 1(b), I plot t(x) against x. As x increases, θ2 and θ3 become

more likely, with the marginal effect on the latter value becoming stronger as

x rises. The slope of the transfers with respect to an increase in x rises as well:

as higher states become more likely, the marginal transfers t′(x) must rise as

well. Note that the transfers t(x) here depend only on the posterior beliefs

µ(·|x), and not on the prior µ0. �

As the contour mechanism C is pinned down following some µ, it uniquely

pins down the transfers for x > x(µ) as well. This presents an even stronger

form of the celebrated revenue equivalence result of Myerson (1981). In the

11This was derived in Mensch (2021).
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(a) Contour of beliefs

(b) Allocations and transfers

Figure 1: Entropy costs, three states

17

Page 18 of 72



latter, for any exogenously given distribution of types, one must specify the

mechanism’s allocation, and based on which is specified, one can pin down the

transfers (and hence the revenue) necessary to implement it. Here, however,

the mechanism itself is also pinned down, not only by the distribution of

types, but also by some initial value of µ along the contour. This means that

if µ is along the contour for two different contour mechanisms, the transfers

associated with x(µ) + δ must differ from t(x(µ)) by the same amount, and

the beliefs at x(µ)+δ must agree (as long as x(µ)+δ ∈ [0, 1]). In other words,

if one starts at the same belief µ, one must proceed along the same contour of

beliefs, with values of x shifted by by the same amount. I summarize this in

Proposition 2.

Proposition 2: Let (x, t(x), µ(·|x)) ∈ C, and let Ĉ 3 (x̂, t̂(x̂), µ̂(·|x̂)) be an

implementable contour mechanism such that for some δ∗ > 0, x, x̂ ∈ [δ∗, 1−δ∗]
and µ̂(·|x̂) = µ(·|x). Then

t̂(x̂+ δ)− t̂(x̂) = t(x+ δ)− t(x)

µ̂(·|x̂+ δ) = µ(·|x+ δ)

for all δ ∈ (−δ∗, δ∗).

5 Optimal Mechanism Design: Bayesian Per-

suasion

The results of the previous section imply that in order to implement a

mechanism, one must ensure that the points induced by it lie on some contour

mechanism C. However, it does not pin down the distribution of points along

the contour. As shown in Theorem 1, any such distribution will be incentive-

compatible. This leaves some leeway for the seller to choose which distribution

to induce. In Figure 2, I show one such possible set of posteriors, in which the

prior, denoted by µ0, is in their convex hull. It is therefore possible to assign

appropriate weights to each of the posteriors in order to make them sum to
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the prior, thereby satisfying Bayes’ rule.

Figure 2: Possible distribution given C

One can thus view the problem as one of optimal Bayesian persuasion

(Kamenica and Gentzkow, 2011). Formally, for a fixed contour mechanism C,
define the value of a posterior to be

vC(µ) ≡

t(x(µ)), (x(µ), t(x(µ)), µ) ∈ C

−∞, otherwise
(6)

The concave closure of vC is then given by

VC(µ) ≡ sup{z : (µ, z) ∈ co(vC)} (7)

where co(vC) is the convex hull of the graph of vC.
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Theorem 3: A mechanism is optimal if and only if it solves

max
C

VC(µ0) (8)

such that t(0) = 0.

The reduction of the problem to that of Bayesian persuasion aids in the

finding of the solution, as one can then import results pertaining to opti-

mal persuasion mechanisms. For instance, one need only restrict attention to

mechanisms with at most K signal realizations.12 As the resulting mechanism

is finite-dimensional, this limits the search for the optimal mechanism to a

much smaller set of possibilities, and enables one to use first-order conditions

to search for the optimum.

Corollary 4: When there is one buyer, there exists an optimal mechanism

such that |supp(τ)| ≤ K.

Given that one need only consider distributions of size ≤ K, one can solve

for the optimal mechanism by deriving the values of t̃(µ) and µ(·|x) for a

given µ and then using numerical techniques to find the best K points along

the contour.

Remark 1: As the utility of the buyer from the mechanism is linear in θ, the

expected utility of a given (x, t(x)) is a function of the posterior mean of θ.

Thus one may be tempted to use the results of Dworczak and Martini (2019),

who provide additional tools for solving persuasion problems in this class us-

ing a price-theoretic approach. However, this is not immediately applicable

here, as their results depend on the ability to implement any distribution of

posteriors which contain the prior in their convex hull. This will generally

not be possible due to the requirement that beliefs must lie along the contour

mechanism. Moreover, the cost function of information acquisition, based on

H, would need to be measurable in the posterior mean, in contrast to the

present (weaker) assumption of strong concavity of H in the posteriors. �

While I will press the analysis of the form of the optimal mechanisms

12This follows from the standard reasoning based on Carathéodory’s theorem.
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further for the case of binary states in Section 6, it is possible to provide a

partial characterization for the general case as follows.

Proposition 5: In the optimal single-buyer mechanism, for some µ ∈ supp(τ),

x(µ) = 1, while at the other posteriors (if any), x(µ) ∈ [0, 1).

In words, there is always an option in the optimal mechanism that sells

the item to the buyer with probability 1. The intuition is similar to that for

the standard case of exogenous interim values: one leaves money on the table

by having all allocation probabilities be less than 1, since one can raise them

without changing the information acquisition incentives. One can then raise

transfers as well, increasing revenue.

One may well wonder if one can say something about the allocation prob-

abilities at the other posteriors. For instance, with exogenous distributions, a

posted-price mechanism is always optimal (e.g. Riley and Zeckhauser, 1984).

The answer, as we will see in the next section, is no: there will be cases where

non-posted-price mechanisms are optimal. In the parlance of Riley and Zeck-

hauser, it will be optimal to “haggle” over the price by making offers that are

neither accepted nor rejected with certainty.

Remark 2: Consider the transfers that are associated with the optimal mech-

anism. By Corollary 4, the optimal mechanism will contain at most K signal

realizations, and by Proposition 5 there will be one signal realization at which

the item is allocated with probability 1. If one were to take these signals

as exogenously given, the buyer would be indifferent between this allocation

and that associated with the lower realization (in the case of posted price

mechanisms, that given by non-participation), as otherwise the seller could in-

crease the price. Yet here, ex interim, the buyer strictly prefers their assigned

allocation.

This can be inferred from Figure 1. In Figure 1(a), the contour mechanism

maps out a continuum of possible values of x that increase as one moves along

the contour of beliefs. In Figure 1(b), as a result of the changes in beliefs as

x increases, the transfers associated with x are increasing as well. Implicitly,

the seller must offer a strictly increasing allocation for the intervening possible
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posteriors µ, even if they occur with probability 0, in order to maintain ex-ante

incentive compatibility. By the envelope theorem, as in Myerson (1981), this

means that the ex-interim utility to the buyer must be strictly increasing for

intervening values of µ.

By contrast, in the case of exogenous signals, the seller does not need to

worry about such posteriors, as they occur with probability 0. The seller there-

fore keeps the allocation constant in the gaps between the interim expected

values in the support, and so the ex-interim utility remains constant. Thus the

seller must leave more rent to the buyer in the case of endogenous distribution

of interim types compared to the case of exogenous distribution, even when

allocating to them with the same probabilities. �

It is well known that Bayesian persuasion problems can be difficult to

solve in general, especially when there are at least three possible states. The

additional level of complication of finding the right non-participation belief

makes a general explicit solution even more difficult. In the remainder of the

paper, I explore more particular environments, in which it is possible to say

more about the optimal mechanisms.

6 Optimal Mechanisms: Single Buyer, Binary

Types

6.1 General characterization

Up until now, the results have held generally for an arbitrary number of

states for a given buyer. In this section, I focus on the case of two states, which

has more structure, in order to derive further results. In particular, this ensures

that there is essentially one contour mechanism possible, and so reduces to the

choice of a non-participation belief, and the subsequent persuasion problem,

along that contour.

Let Θ = {θ1, θ2} with θ2 > θ1; then beliefs µ are one-dimensional, allowing

one to order them by the probability they place on θ2. Then as derived in
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Appendix B in the proof of Lemma 4, once can write the marginal change in

x as µ(θ2) increases as

x′(µ) = −
∂2H

∂µ(θ2)2 (µ)− 2 ∂2H
∂µ(θ2)∂µ(θ1)

(µ) + ∂2H
∂µ(θ1)2 (µ)

θ2 − θ1

(9)

This is positive due to the strong concavity of H, which makes the numera-

tor negative. Intuitively, higher allocations must be given to higher interim

types, which correspond to higher µ(θ2). The degree of concavity of H can

be interpreted as the rate at which the marginal cost of information increases.

To incentivize the buyer to acquire information despite this cost, the alloca-

tion provided at posterior µ must change sufficiently. At the same time, a

larger difference between states, θ2−θ1, incentivizes the buyer to acquire more

information, and so a smaller change in allocation is needed to reach µ.

By (IC-I), the Myersonian envelope condition t′(x) = Eµ(·|x)[θ] holds, and

so with some abuse of notation treating µ as standing for µ(θ2) and t̃ as a

function of that single variable,

t̃′(µ) = [θ2µ+ θ1(1− µ)]x′(µ) (10)

Thus, for fixed µ, the persuasion problem is defined by

vC(µ) = t̃(µ) =

∫ µ

µ

t̃′(µ)dµ (11)

where x(µ) = 0 = t(x(µ)).

An interesting fact that emerges is that any shape of t̃(·) (respectively, x(·))
can be generated by the appropriate choice of H, as long as it is monotone

and sufficiently smooth, by manipulating the degree of concavity of H at µ. If

one scales H by κ while holding fixed the values of θ, one scales x′ by κ. If one

scales the values of θ by κ as well, one returns to the original values of x′, but

scales t̃′ by κ. This allows one to arbitrarily restrict the feasible interval [µ, µ̄]

as well. In tandem, one can have arbitrary combinations of t̃′ and intervals

[µ, µ̄]. This is useful in exploring properties of the optimal mechanism, as will
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be done when examining the optimality of the posted-price mechanism.

Equations (9) and (10) reveal that in the binary state environment, there

is essentially a unique implementable mechanism: for a given belief, both the

allocations and transfers must evolve in a fixed way. The additional structure

imposed allows one to represent beliefs, allocations, and transfers by a single

one-dimensional variable. The only degrees of freedom for the seller along this

contour mechanism, then, are the non-participation belief, and the posteriors

which receive positive weight (of which, by Corollary 4, there need not be more

than two). These narrow constraints allow one to straightforwardly solve for

the optimal mechanism.

These equations highlight the three economic tradeoffs that the seller makes

when choosing the optimal mechanism alluded to in the motivating example.

First, by the envelope theorem, the marginal benefit of increasing the alloca-

tion at belief µ is θ2µ(θ2) + θ1(1 − µ(θ2)). As this is increasing in µ(θ2), the

seller would like to provide higher allocations at higher beliefs, rather than sell

with high probability x near µ0, all things being equal.

Second, the Bayesian constraint on beliefs provides a counteracting incen-

tive. Suppose that we label the optimal (binary) posteriors µ1 and µ2, with

µ2(θ2) > µ1(θ2). While, as argued in the previous paragraph, increasing µ2

provides higher rent extraction opportunities, it also decreases τ(µ2) if one

holds µ1 fixed. Thus, there is a tradeoff between the amount of rent one can

extract for a given posterior, and the probability with which that posterior

occurs.

Lastly, for any {µ1, µ2}, the seller would like to extract as much rent as

possible, by selling with the highest possible probabilities. This is done by set-

ting µ as low as possible. However, the seller is constrained by the allocation

probability x needing to be at most 1. It is straightforward that in the opti-

mal mechanism, x(µ2) = 1. Beyond this, though, there is now an additional

incentive to decrease µ2 in order to relax the aforementioned allocation con-

straint. This incentive is distinct from that in the previous paragraph, which

arises from the constraint from Bayes’ rule on posteriors; here, it arises from
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the constraint on allocation probabilities. Hence even if (µ1, µ2) are optimal

for a given µ, it may be an improvement for the seller to lower µ in order

to extract more rents; this may lead to a different choice of posteriors being

optimal overall.

6.2 Posted-price mechanisms

A classic result from the literature on pure allocation mechanisms is that

posted-price mechanisms are optimal: the buyer can either pay a certain t and

receive the item with probability 1, or not pay anything and receive nothing.

Here, this result does not automatically hold. Viewing the problem as one

of Bayesian persuasion makes the reasoning behind this clear. There are two

possibilities for posted-price mechanisms: either the buyer always purchases

the item (i.e. τ(µ(·|x = 1)) = 1), or only does so some of the time (τ(µ(·|x =

1)) < 1). In the former case, there will be one signal realization (i.e. no

information acquired); in the latter, there will be two. As seen above, in the

optimal mechanism, the item is sold with probability 1 at the higher of the

two induced beliefs (if only one is induced, the item is sold with probability 1

as well). Yet the exact optimal persuasion mechanism will depend on t̃. This

will lead to some situations where it will not be optimal to have a posted price.

I illustrate this in the following example.

Example 2: Consider the case, as illustrated in Figure 3, where13

t̃′(µ) =



1, µ < 0.4

ε, µ ∈ [0.4, 0.5]

0.07
ε
, µ ∈ (0.5, 0.5 + ε]

0.4, µ > 0.5 + ε

13Recall from the discussion following equations (9-11) that one can generate any mono-
tone t̃ with the appropriate concave H. While the present t̃ is technically not differentiable
at the transition points, one can uniformly approximate this by a differentiable function.
This leads to the solution presented here approximating the correct one for appropriately
differentiable H.
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Figure 3: Posted price not optimal

Consider µ0 = 0.5 in the limit as ε → 0. To see that the posted-price

mechanism is not optimal for some values of κ (a constant to scale H) and

θ1, θ2, we can choose these such that
∫ 0.5+ε

0.4
x′(µ)dµ < 1. By the concavification

results from Bayesian persuasion, the optimal persuasion mechanism will have

support on the two points {0.4, 0.5 + ε} if they are both feasible for some

µ1 ≤ 0.4. We must also check that it is not better to instead set x(µ0) = 1 for

some other µ2 < 0.4. The reason that the former is preferable is that, by the

envelope theorem, one needs to increase x by less to achieve the same increase

of t for µ(θ2) ∈ [0.5, 0.5 + ε] than for lower values of µ(θ2). Formally, if∫ µ
1

µ
2

x′(µ)dµ =

∫ 0.5+ε

0.5

x′(µ)dµ

then ∫ µ
1

µ
2

t̃′(µ)dµ <

∫ µ
1

µ
2

x′(µ)[0.4θ2 + 0.6θ1]dµ
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<

∫ 0.5+ε

0.5

x′(µ)[0.5θ2 + 0.5θ1]dµ

<

∫ 0.5+ε

0.5

t̃′(µ)dµ

Moreover, for µ such that µ = 0.5 + ε is a feasible posterior,

lim
ε→0

VC(0.5) = vC(0.5) + 0.07

lim
ε→0

∫ 0.5+ε

0.5

x′(µ)dµ =
0.07

0.5θ2 + 0.5θ1

Thus one can ensure that 0 < µ
2
< µ

1
< 0.4 for the right choices of {θ1, θ2},

i.e. 0.5θ2 + 0.5θ1 > 0.07 but not too large. The limit difference in payoffs

between the two mechanisms is then∫ 0.5+ε

0.5

t̃′(µ)dµ−
∫ µ

1

µ
2

t̃′(µ)dµ > 0

Hence the optimal mechanism will involve one option of buying with proba-

bility one, and another of buying with a lower but nonzero probability. �

To understand the economic intuition for the suboptimality of the posted-

price mechanism in Example 2, one must consider the tradeoffs mentioned

above for the seller’s optimal mechanism design problem. In order for the

seller to find it optimal for the buyer to acquire any information at all (rather

than simply focus on the third incentive, i.e. to extract as much rent as

possible from µ0), the incentive to sell to the buyer at belief µ > µ0 due to

higher rent extraction must significantly outweigh the lower probability with

which µ occurs due to Bayes’ rule. Thus, ideally, the seller would like to induce

high beliefs that occur with high probability. The rapid increase in marginal

cost, due to the high concavity between µ(θ2) = 0.5 and 0.5 + ε, enables the

seller to do so. Beyond µ(θ2) = 0.5 + ε, the marginal cost rises more slowly,

leading to the second effect outweighing the first.

On the other hand, the marginal cost rises slowly as one moves µ down

from µ0, until one reaches µ(θ2) = 0.4, after which it rises more rapidly. This
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enables the seller to make the higher of the two posteriors more likely, without

violating the allocation probability constraint. Below µ(θ2) = 0.4, the seller

must increase the rate of change of the allocation probability. This does not

allow him to assign enough additional weight (by Bayes rule) to posterior 0.5+ε

to outweigh the loss of revenue from decreasing the allocation probability at

µ, and so the lower of the two beliefs is optimally set at µ(θ2) = 0.4. Since the

difference x(0.5 + ε)− x(0.4) < 1, this implies a non-posted-price mechanism.

Just as the Bayesian persuasion perspective illustrates cases where the

posted-price mechanism is suboptimal, it also provides sufficient conditions

for the posted-price mechanism to be optimal. Using the intuition from this

perspective, if t̃ is convex, then the seller wants the buyer to acquire as much

information as possible, given the incentives of the contour mechanism. This

involves inducing posterior beliefs that lie at the extreme points of the contour

mechanism, i.e. corresponding to x = 0 and x = 1, as shown in Figure 5. Of

course, such a policy is by definition a posted-price mechanism.

Figure 4: Posted price when t̃ is convex
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Alternatively, if t̃ is concave, as in Figure 6, then the seller wants the buyer

to acquire no information. Thus the buyer’s posteriors will remain at the prior

µ0. Given such a policy, it is optimal to set x as high as possible for µ0, i.e.

x(µ0) = 1. Thus it leads to a posted price being optimal as well. I state this

formally in the following theorem.

Figure 5: Posted price when t̃ is concave

Theorem 6: When Θ is binary, if t̃(µ) is either concave or convex in µ for

all choices of µ, then a posted-price mechanism is optimal.

Example 3: Suppose that H is proportional to residual variance, i.e.14

H(µ) = κ[µ(θ2)(1− µ(θ2)) + µ(θ1)(1− µ(θ1))]

Then

x′(µ) =
4κ

θ2 − θ1

14This formula has been used as a cost function for information design by Gentzkow and
Kamenica (2014) and Ely et al. (2015).
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and so

t̃′(µ) =
4κ

θ2 − θ1

(θ2µ(θ2) + θ1(1− µ(θ2)))

=⇒ t̃′′(µ) = 4κ > 0

Hence the posted-price mechanism is optimal.15 �

The economic intuition is as follows. Recall that any statement about the

shape of t̃ is implicitly a statement about H, i.e. the costs of information

acquisition. From the discussion of Example 2, in order to make informa-

tion acquisition worthwhile, the seller must see sufficient gains in rents from

extracting from higher types, and these must occur with high enough proba-

bility. Convexity of t̃ essentially means that it is expensive for the buyer to

acquire high beliefs, but cheap to acquire low ones. The seller can be sure

that the buyer will not acquire beliefs that are so high that they occur with

such low probability to make their rent extraction gains not worthwhile. Con-

versely, the cheapness of low beliefs means that the seller can easily incentivize

low posteriors in order to make the high-rent outcome more likely. Hence the

seller optimally induces as much information acquisition as possible, given the

allocation probability constraint.

For concavity, the intuition runs the other way: it is cheap to acquire high

beliefs, and expensive to acquire low ones. Hence the seller does not find

it worthwhile to attempt to extract higher rents by inducing higher beliefs,

since offering a higher allocation leads the buyer to a posterior so much higher

that it is very unlikely to occur; this would outweigh the rent gains from

higher posteriors. Meanwhile, low beliefs are too costly relative to the gains

in probabilities of the buyer receiving the high signal. The seller therefore

optimally induces no information acquisition.

The simple form of the optimal posted-price mechanism makes it straight-

forward to compute the optimal beliefs. By standard envelope-theoretic rea-

soning ex interim, the marginal increase in transfer from an increase in the

probability of receiving the item is equal to the expected value of the buyer.

15In fact, I show in Section 6 that when costs are defined by residual variance for an
arbitrary number of states and buyers, a second-price auction with a reserve price is optimal.
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Thus, increasing p must correspond to increasing the interim expected values

at which the item is sold with probability 1 (namely, µ̄), and hence increas-

ing the non-participation belief (µ) as well to ensure that
∫ µ̄
µ

x′(µ)dµ = 1, as

x′(µ) > 0. As t̃′(x) is positive and increasing in x, it follows that for any

posted price p, there will be a unique pair of beliefs (µ, µ̄) such that∫ µ̄

µ

x′(µ)dµ = 1

and ∫ µ̄

µ

t̃′(µ)dµ = p

Therefore, p will implement posteriors with support on {µ, µ̄}.

7 Optimal Mechanisms: Multiple Buyers

I now extend the results for single-buyer environments to the N -buyer case.

I assume that values are private and independently, symmetrically distributed.

The mechanism design literature has long focused on symmetric mechanisms,

going back to Myerson (1981) and Maskin and Riley (1984). Additionally, as

has been noted by Bergemann and Pesendorfer (2007) and Deb and Pai (2017),

there may be legal or fairness restrictions that prevent asymmetric treatment

of the buyers. I therefore primarily restrict attention to symmetric mechanisms

as a first step to approaching this problem. However, this restriction may not

be without loss of optimality. Indeed, in the case of H quadratic (Section

7.2), I show that for two buyers, one can improve over the optimal symmetric

mechanism by a simple asymmetric one.

The main techniques developed for the single-buyer case can be used in the

the multi-buyer case as well. From the perspective of each individual buyer,

the problem is exactly the same. That is, the tradeoff between information

acquisition and allocation probabilities is identical. Thus the same envelope

condition as in Lemmas 3 and 4 hold here as well.
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The key difference, though, is that the presence of N buyer imposes a

resource constraint that was not present before. If the seller allocates the item

to one of the buyers, he cannot physically allocate it to another one. When

combined with the interim incentive compatibility constraint, the results of

Border (1991, Proposition 3.2) imply that a given mechanism is implementable

ex interim if and only if it satisfies∫ 1

x∗
xdτ(µ(·|x)) ≤ 1− τ({µ : x(µ) < x∗})N

N
(12)

for all x∗. Since, by Theorem 1, any distribution τ is implementable as long

as it lies along the same contour in the case of a single buyer, this implies

that a mechanism will be implementable if and only if the induced τ along the

contour satisfies the extra constraint in (12).

7.1 General N-buyer case, K = 2

The presence of the constraint in (12) prevents the straightforward use of

concavification that one could use in the single-buyer case with K = 2, as

the resultant distribution will no longer necessarily be implementable. For

instance, in Example 2, the optimal mechanism induced a high posterior with

positive probability, at which the item was sold with probability 1. This

violates the Border constraint, since it entails a positive probability event of

allocating the same item to multiple buyers with probability 1, an obvious

impossibility. This issue requires developing techniques that incorporate this

constraint.

The key insight is that the seller would still like to concavify; he is merely

constrained from doing so by feasibility considerations. So, he would essen-

tially like to concavify “as much as possible.” That is, he would like to spread

out the posteriors in such a way that exploits the possible gains in rents from

information acquisition, without promising any buyer to receive the item with

high enough probability to violate the Border constraint. Thus, he will imple-

ment any feasible mean-preserving spread from µ such that the average value
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of t̃ from the spread is greater than at the original µ. This makes the solution

to the problem a form of constrained concavification.

How does this approach square with the results of the single-buyer case

regarding the concavity/convexity of t̃? As before, ignoring the Border con-

straint, one wants to pool the probabilities in the former case, and spread them

out in the latter. However, one also has an incentive to manipulate the Border

constraint as well. If x(·) is a convex function, then pooling the probabilities

for µ > µ∗ decreases x on average, and so relaxes (12) at µ∗. The seller could

then potentially extract more rent by lowering the non-participation belief.

This presents an extra incentive to the seller to induce less information acqui-

sition in the multi-buyer environment, rather than always inducing as much

information acquisition as possible (i.e. the most extreme mean-preserving

spread) as found in the single-buyer case.

Conversely, if x(·) is concave (which it will be whenever t̃ is concave, by

(10)), then pooling µ over an interval to some µ∗ potentially leads to a violation

of (12) at µ∗. Thus the seller may want to spread out the beliefs even further

(by inducing information acquisition) even when t̃ is concave, which he would

never want to do in the single-buyer case.

Notice that if t̃ is convex and x(·) is concave (as it is, for instance, when the

cost is given by residual variance), the seller has incentives to spread out beliefs

as much as possible both from concavification and from the Border constraint.

Hence, given µ, the seller will assign as much weight as possible to the highest

possible beliefs (while satisfying (12) with equality), and assign the rest of the

weight to µ. This can be implemented by, for instance, a second-price auction

with a reserve price. I state this formally in Lemma 5 and Proposition 7.

Lemma 5: Suppose that Θ is binary. If x(·) is concave, then, for any τ

and µ satisfying (12), there exists a mean-preserving spread of τ , denoted

by τ̂µ, such that for some µ∗, (12) holds with equality for all µ ≥ µ∗, and

τ̂µ(µ) = 1− τ̂µ(µ ≥ µ∗). Moreover, τ̂µ(µ) is increasing in µ.

Proposition 7: Suppose that Θ is binary and that boundary beliefs are not

implementable given µ0. If x(·) is concave and t̃(·) is convex, the optimal
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mechanism can be implemented by a second-price auction with a reserve price.

A simple example of a cost function that satisfies the criteria of Proposition

7 is that of residual variance; another example is the following.

Example 4: Suppose that t̃ is linear in µ on the set of implementable beliefs,

and so for some constant16 α > 0, x′(µ) = α
θ2µ(θ2)+θ1(1−µ(θ1))

. Notice that

persuasion has no effect here: given µ, Eτ [t̃(µ)] is immutable. Thus, the only

way to affect payoffs is to change µ, which at the optimum will be as low as

possible. This is done by the second-price auction that sets the lowest possible

value of µ, which, by Lemma 5, corresponds to setting τ(µ) = 0. In other

words, the reserve price will be 0, as the item is sold with probability 1 to

some player, i.e. with probability 1
N

to each. �

Since the optimal mechanism is of this particular form, it is much simpler

to find the corresponding non-participation belief. By Lemma 5, one can infer

the corresponding reserve price for values of µ as we decrease it from µ0, such

that Bayes’ rule is satisfied, as there will be a unique such reserve price for

each such µ as defined by (9) and (10).

While the optimal mechanism here is, as in classic results like Myerson

(1981), a second-price auction with a reserve price, the intuition here is essen-

tially a dual to the classic intuition. In classic results, the second-price auction

is optimal because one has a fixed distribution, and the seller benefits most

from selling with highest probability to the types with highest value. Here,

one considers a fixed set of possible probabilities of sale, and considers the

optimal distribution over interim expected values. Since the seller wants to

assign the highest possible values to the highest probabilities of sale, he spreads

out beliefs in order to achieve this. However, such a spread of beliefs is only

beneficial overall if the requisite convexity/concavity conditions are satisfied,

since it also increases the probability of the buyer(s) receiving a low interim

16By (9), this would mean that

∂2H

∂µ(θ2)2
(µ)− 2

∂2H

∂µ(θ2)∂µ(θ1)
(µ) +

∂2H

∂µ(θ1)2
= − α(θ2 − θ1)

θ2µ(θ2) + θ1(1− µ(θ1))

from which it is possible to integrate the function to derive H.

34

Page 35 of 72



expected value. This makes the conditions for optimality of the second-price

auction with a reserve price more stringent.

As with exogenous signals, the optimal reserve price depends on the trade-

off between greater participation and greater extraction of rents from those

buyers who do participate. With flexible information acquisition, this comes

down to how much the seller gains from persuasion versus exploitation of the

induced distribution of posteriors. Higher reserve prices induce less weight on

intermediate posteriors (i.e. those below µ∗), and so can be thought of as a

form of “more” persuasion for the purpose of extracting rents from high beliefs.

This is the analogue of the first two incentives that were present in the single-

buyer problem. However, this additional persuasion prevents exploitation that

could be achieved through lowering µ.

Remark 3: Similarly to Remark 2, here the reserve price for a given cutoff

interim value Eµ∗ [θ] will be lower than if the distribution were exogenously

given, as long as it is above Eµ[θ]. This means that the buyer who has this

cutoff value will receive positive rents. The reasoning is analogous: the seller

must provide positive rents to this interim value in order to deter deviation to

values between Eµ[θ] and Eµ∗ [θ]. So, even if the seller were to implement the

same allocation in the auction ex interim, his revenue would be lower. This

again contrasts with inflexible information acquisition, e.g. Shi (2012), where

the reserve price is precisely equal to the value of the cutoff type when there are

also types present just below it. Indeed, even if one were to consider a binary

information decision of whether to acquire information according to τ or not

to acquire any information, then as long as the buyers would get sufficient rent

on average, it would not be necessary to modify the reserve price at all if it is

above the ex-ante mean expected value (and so they would rather acquire the

information to be able to purchase the item with positive probability at all ex

ante). The ability of the buyer to deviate flexibly on the margin in the choice

of information aquisition thus drives the reserve price down. �
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7.2 Quadratic costs, K arbitrary

Many of the techniques from the binary-state environment carry over to

the case where H is quadratic, i.e.

H(µ) =
∑
θ,θ′∈Θ

aθ,θ′µ(θ)µ(θ′)

for some set of coefficients {aθ,θ′}θ,θ′∈Θ. This generalizes the case examined

in Example 3, where H was given by residual variance for a single buyer.17

These cost functions are natural to consider for several reasons. First, it is

the simplest example of a function of the form that I consider (i.e. strongly

concave and sufficiently differentiable). Since the second derivative of H plays

a major role in the analysis, examining the case where the second derivative is

constant is a natural place to start. In addition, the residual variance function,

as noted by Ely et al. (2015), can describe the amount of private information

in insider trading models (Kyle, 1985; Ostrovsky, 2012).

The following result extends the posted-price result seen in Example 3.

Proposition 8: Let H be quadratic. Then the optimal mechanism is imple-

mentable by a second-price auction with a reserve price.

The intuition for Proposition 8 is that it turns out that the contour mech-

anisms C for such H are relatively simple: the beliefs µ(·|x) must all be linear

in x. As a result, it is straightforward to consider mean-preserving spreads of

beliefs, allowing for manipulation analogous to that in Lemma 3. As transfers

t(x) will be convex in x, the most extreme mean-preserving spreads possible

will be optimal. Of course, these are implemented by second-price auctions

with reserve prices, as was similarly found for the case of binary states.

This makes finding the non-participation belief/reserve price pairs similar

to the binary-state environment. One can infer possible values of the non-

participation belief along the line of possible beliefs that intersects µ0. For each

such possible non-participation belief, there will be a unique Bayes-plausible

17Recall that any terms that are affine in µ(θ) wash out in expectation. Hence it is
without loss to consider H that has only quadratic terms, and none of lower degree.
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reserve price. One then calculates the optimal non-partipation belief along this

line by checking which of these maximizes revenue given its associated reserve

price. This greatly simplifies the maximization problem to a single value on a

given line.

Remark 4: The simple structure of the contour mechanisms for H quadratic

allows for a straightforward construction of an asymmetric mechanism that

would do better than a (symmetric) second price auction with a reserve price.

Consider the case of N = 2. Let µ∗ be the cutoff belief, such that for all µ

along the contour, if Eµ[θ] < Eµ∗ [θ], then either µ /∈ supp(τ) or µ = µ. Thus

µ∗ is the posterior belief at which the buyer pays the reserve price conditional

on winning.

As can be easily derived from (12) and the linearity of µ(·|x) in x, the

posterior distribution of interim values must be uniform over the interval

[Eµ(·|x∗)[θ], Eµ̄[θ]]. Then the alternative distribution of posterior values

τ̂(µ) =



1
4
(1− τ(µ)), µ = µ∗

1
2
(1− τ(µ)), µ = 1

2
(µ∗ + µ̄)

1
4
(1− τ(µ)), µ = µ̄

τ(µ), µ = µ

is a mean-preserving spread of τ . Now suppose that the seller induces buyer

1 to acquire information according to

τ1(µ) =

(1− τ(µ)), µ = 1
2
(µ∗ + µ̄)

τ(µ), µ = µ

and buyer 2 to acquire information according to

τ2(µ) =


1
2
(1− τ(µ)), µ = µ∗

1
2
(1− τ(µ)), µ = µ̄

τ(µ), µ = µ
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Thus 1
2
τ1+ 1

2
τ2 = τ̂ . Moreover, since t̃(µ) is convex, this alternative information

structure yields higher profits to the seller. This means that the seller could

improve his payoff by using a hierarchical mechanism,18 in which:

� the seller sells to buyer 1 if she receives a posterior of µ̄;

� otherwise, he sells to buyer 2 if she receives a posterior of 1
2
(µ∗ + µ̄);

� if neither hold, then he sells to buyer 1 if she received a posterior of µ∗;

and

� the seller does not sell the item in any other case. �

The intuition for why the optimal mechanism is asymmetric differs from

that of Bergemann and Pesendorfer (2007, Lemma 3). In the latter, the seller

would prefer to break any symmetry by awarding the item to a particular buyer

i with the same probability for adjacent posterior expected values, and then

merging them; this would increase the virtual value associated with the merged

posterior, and hence the revenue that can be extracted for it, without changing

the probability of receiving the item. By contrast, here, x and t are determined

uniquely for a given posterior by µ, regardless of the rest of the distribution

τ ; thus the virtual values cannot be manipulated in this way. Instead, it is

the nonlinearity of the transfer function t̃ which may cause mean-preserving

spreads/contractions of the distribution to improve the seller’s payoff. As the

set of possible mean-preserving spreads/contractions is expanded by allowing

for asymmetry, it may be optimal to use an asymmetric mechanism.

7.3 N →∞, K arbitrary

Lastly, I consider the case of large auctions, as the number of buyers ap-

proaches infinity. The interplay of the incentives for information acquisition

and the Border constraint make the question of what happens in the infinite-

buyer limit more complicated. On the one hand, as is standard in the litera-

ture, the winning buyer will be in the upper tail of the distribution of buyers’

18Such mechanisms play a prominent role in the proofs in Border (1991).
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values. On the other hand, with flexible information acquisition, this distribu-

tion will be endogenous. While for each N , the buyers can still be incentivized

to acquire information that yields beliefs µ with positive probability such that

Eµ[θ] is well above Eµ0 [θ], each individual buyer’s chance of winning vanishes

in the limit, and so the incentive to acquire such information vanishes as well

for each buyer. Nevertheless, it is not immediately clear that inducing such

information is asymptotically ineffective, since it remains possible that with

flexible information acquisition, the buyer acquires signal realizations with

significantly higher values than those at the prior, albeit with vanishing prob-

abilities. Therefore, depending on the rate of vanishing, aggregating across the

buyers may yield such high signals with high enough probability to increase

the seller’s revenue. The question, then, is how exactly the two effects interact,

what mechanism is optimal, and what information is chosen as a result.

It turns out that the incentives balance in such a way that one can calculate

the optimal mechanism, which is implemented by a second-price auction with

no reserve price. One can then generate a formula for the expected revenue.

Theorem 9: Let τN be any distribution of posteriors and µN be the beliefs for

N buyers satisfying (12). Then in the limit as N →∞,

(i) For all ε > 0,

lim
N→∞

τN({µ : Eµ[θ]− Eµ0 [θ] < ε}) = 1

(ii) The non-participation belief approaches the prior, i.e.

lim
N→∞

µ
N

= µ0

(iii) Maximal revenue is generated by a second-price auction with a reserve

price of 0, yielding revenue

lim
N→∞

max
τN ,CN

N

∫ 1

0

tN(x)dτN(µ(·|x)) =

∫ 1

0

tµ0(x)

x
dx (13)

with tµ0(x) derived from (3) for µ = µ0.
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Parts (i) and (ii) of the theorem follow from the fact that information

remains costly, but the chance of winning vanishes. The cost of information

chosen must vanish as well, which can only be done by beliefs that converge

to the prior. Since if this involved a value of x greater than 0 in the limit, it

would not be physically feasible, the associated value of x must be 0 as well,

i.e. beliefs approach the non-participation belief.

Part (iii) is established by examining the probability that the buyer who

ends up receiving the item has a posterior belief that is associated with get-

ting the item with probability at least x. Recall from the discussion at the

beginning of this section in the binary-state environment with convex t̃ that

there is a tradeoff between acquiring more information and relaxing the Bor-

der constraint. Here, though, the analogous tradeoff disappears in the limit.

From part (ii), the limit value of µ is µ0. So, any manipulation of the limit

distribution of beliefs essentially is equivalent to a manipulation of the limit

distribution of x, without altering t(x) and µ(·|x). Thus, relaxing the Border

constraint offers no advantage, as one cannot thereby change the values of

µ and t. As t(·) is a convex function of x, it is optimal to generate mean-

preserving spreads of distributions over x that are as extreme as possible,

which will be those generated from second-price auctions (by reasoning akin

to that in Lemma 5 and Proposition 7).

Remark 5: One might think that the reserve price is of no importance here,

because the chances of getting a signal anywhere other than at the top of the

distribution vanishes. So, leaving out buyers with an interim value under any

reserve price would not affect revenue. While this is true when the distribution

of values is exogenous, it is no longer so when the distribution is endogenous

as is the case here. As derived in the proof, the density function of the interim

values as N → ∞ will be approximately proportional to 1
Nx

. So, the lower

signals will be much more likely, making them still relevant for the seller.

Indeed, if one were to set reserve price r > 0, and defined x∗ to solve tµ0(x∗) =

r, then the limit revenue would only be
∫ 1

x∗
tµ0 (x)

x
dx. If the reserve price were

anything other than 0, the seller would be leaving money on the table by

essentially censoring lower parts of the distribution of x. �
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One intriguing possibility, which I do not explore here, is that there may

be potential improvements for the seller from sequential mechanisms, in which

information acquisition is possible during the execution of the mechanism it-

self, rather than just beforehand once the mechanism has been set. Since the

incentive to acquire information is vanishing precisely because the chances of a

given buyer receiving the item, even with information acquisition, are so small,

eliminating this reason restores the incentives. For instance, the seller could

offer the item to the buyers sequentially, where he selects a particular buyer,

and depending on the signal she gets, offers to sell with a given probability. If

the item remains unsold, the seller can then move on to the next buyer and

recommend her an information acquisition strategy, without having to worry

about feasibility constraints of allocations among multiple buyers. More gen-

erally, the seller could condition the mechanism offered to the second buyer

on the signal realization that the first buyer received. Thus, if the first buyer

received a signal realization corresponding to a low posterior µ1, the seller

may want the second buyer to focus on high posteriors in order to potentially

outbid the first, thereby allowing him to sell at a higher price. Conversely, if

the first buyer received a high posterior µ2, there may be no purpose to having

the second acquire any information, since he is likely to sell the item to the

first buyer anyway. The ability thereby to correlate the choice of information

acquisition across buyers may prove relevant to revenue maximization; the

seller cannot do so via a simultaneous, symmetric mechanism in which buyers

move independently.19 In such a case, the relevant solution concept would be

Bayes correlated equilibrium (Bergemann and Morris, 2016).

19In a related environment, Gershkov et al. (2019) examine optimal mechanisms when
the buyers’ valuations are endogenous due to potential investments. There are situations in
that framework in which sequential mechanisms may be optimal because of this endogeneity.
As the values are endogenous here (albeit for the different reason of information acquisition),
similar reasoning may apply.
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8 Related Literature

Several papers consider auction frameworks with information acquisition,

including Persico (2000), Compte and Jehiel (2007), Hernando-Veciana (2009),

and Bobkova (2019). These differ from the present model in that the auction

format is given (they are not mechanism design problems), and information

acquisition is not flexible.

There is also a literature on comparing revenues for given auction mecha-

nisms based on their dependence on the information structure of the buyers,

such as Milgrom and Weber (1982), Ganuza and Penalva (2012), Bergemann

et al. (2017), and Sorokin and Winter (2019). However, there is no endogenous

information acquisition in these models.

Papers that allow for mechanism design as well as information acquisition

include Bergemann and Valimaki (2002), Szalay (2009), and Shi (2012). These

again all share the feature that the buyers have access to information acquisi-

tion technologies that are perfectly ordered. As a result, their models do not

allow for the additional insights available from Bayesian persuasion.

Another closely related paper is that of Bergemann and Pesendorfer (2007),

who examine optimal Bayesian persuasion in the context of optimal auctions.

In their model, the seller controls not only the mechanism, but also the in-

formation available to the buyers. Here, of course, the information is in the

hands of the buyer.

More generally, starting with Sims (2003) and Matejk and McKay (2015),

there has been a burgeoning literature on entropy reduction/flexible informa-

tion acquisition in decision problems. Caplin and Dean (2013, 2015) exam-

ine this using a revealed preference framework, and extend it to other cost

functions. They provide necessary and sufficient conditions for optimality of

choices by an inattentive decision maker, and also note that her problem is

analogous to one of Bayesian persuasion. Many of the techniques for analyzing

the buyer’s choice, analyzed in Sections 4 and 5, modify their methods to the

present environment.
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Flexible information acquisition has been used in applied frameworks as

well, including Yang (2015), Morris and Yang (2016), Denti (2019), Geor-

giadis and Szentes (2020), Ravid (2020), Yang (2020), and Lipnowski et al.

(2020). Very closely related is the work of Roesler and Szentes (2017) and

Ravid, Roesler and Szentes (2021), who also consider an environment involv-

ing optimal price setting by a seller, and flexible information acquisition by a

buyer. However, these models differ in the timing of the model, and focus on

the zero-cost limits of information acquisition. This simplifies the mechanism

design problem, as the seller need not worry about the effects of the mecha-

nism on the subsequent incentive to acquire information; hence the optimal

mechanism in those models is a posted price as usual.

9 Conclusion

This paper provides new tools for analyzing mechanism design with infor-

mation acquisition, by considering the possibility of the buyer acquiring infor-

mation flexibly. This allows the use of techniques from Bayesian persuasion, as

the design problem effectively becomes one of implementing a Bayes-plausible

distribution of posteriors. This insight allows several additional observations,

such as whether the standard mechanisms like a posted price or a second-price

auction with a reserve price is optimal.

Several possible extensions present themselves. First, one could consider

the case of optimal monopoly quality provision, as in Mussa and Rosen (1978).

In such an environment, the seller would offer a menu of qualities and prices,

analogous to the allocation probabilities and prices here. Implementability

would be again given by contour mechanisms, but the optimal mechanism

would need to take into account the cost of production. This would potentially

lead to making it less desirable to induce extreme beliefs, as a convex cost of

production would lead to large losses for the seller.

Additionally, the use of contour mechanisms is not limited to allocation

mechanisms. A similar technique should also be applicable to any sort of
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principal-agent problem, such as that of contracting under moral hazard. It

would be of interest to see if further insights can be generated in these envi-

ronments as well.

Lastly, I briefly mentioned that the optimal mechanism may be dynamic,

since it may allow the seller to better incentivize the information acquisition

of the buyer. In particular, dynamic mechanisms provide an additional tool,

since they allow responses of later movers to the signals received by the ear-

lier agents. As the benefits of such dynamic mechanisms are not limited to

this environment (see Gershkov et al., 2019), this should be explored more

generally.
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Appendix A: Discussion of Information Acqui-

sition Costs

As mentioned in Section 7, there is a large literature on flexible information

acquisition, in which it is generally assumed that the cost of information ac-

quisition is posterior-separable. There are several reasons for doing so. First,

it captures the idea that information acquisition is flexible, and that the cost

of information is increasing in the Blackwell order. Second, it is relatively

tractable, allowing for use of concavification techniques to solve for the de-

cision maker’s optimal choice for a given decision problem (e.g. Caplin and

Dean, 2013).

It remains to provide a microeconomic foundation for this form of cost

function. As discussed in De Oliveira et al. (2017), a cost function for infor-

mation, in addition to being increasing in the Blackwell order, should satisfy

the inequality

c(ατ + (1− α)τ ′) ≤ αc(τ) + (1− α)c(τ ′) (14)

for any two distributions τ, τ ′, since the agent can always randomize between

two signals to achieve their convex combination. Representability via the

functional form in Section 2 is equivalent to assuming that this inequality

holds with equality (Torgersen, 1991).

On the one hand, (14) should hold with equality when considering a de-

cision maker maximizing expected utility. The agent’s preferences can be

represented by the expected utility from actions conditional on the state, and

so she would value these lotteries equally, as they provide equivalent informa-

tion in expectation.20 As a cost function, though, it is slightly less immediate

why they should be equal, as physically, these are different experiments. Thus

further justification is needed.

There are several possible answers. The first, going back to Sims (1998,

20It is fairly straightforward, by the supporting hyperplane theorem, to construct a de-
cision problem for which the expected utility from the optimal choice conditional on belief
µ is given by −H(µ).
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2003) is that the cost is not one of acquiring, but of processing information.

Suppose that all information is available in some database; the only difficulty

is in accessing it. As has been known since Shannon (1948), the optimal way

to encode information that is available through a limited channel (in terms of

flow per unit of time) is given by informational entropy. As this functional

form is posterior-separable, this environment would satisfy the assumptions of

the model.

Pomatto et al. (2019) provide another justification. In addition to as-

suming that the cost of running two conditionally independent experiments

is equal to the sum of each of their costs, they also provide an axiom closely

related to (14) holding with equality: namely, that the cost of randomizing

between experiment τ with probability α, and no information with probability

1− α, should be equal to that of a single experiment that generates the same

distribution of posteriors as this randomization. They justify this through a

scenario where the decision maker has access to a large number of independent

draws of the same experiment, of which the decision maker can sample as many

as she likes.21 In this case, the decision maker could continue to draw until the

experiment yielded some information, which in expectation would be 1
α

draws.

Thus inequality (14) also goes in the other direction. Their representation

yields a particular functional form of H based on log-likelihood ratios.

Further arguments in favor of such a representation can be made using

revealed preference representations of decision makers with costly informa-

tion acquisition. Per Caplin and Dean (2015), one can represent the decision

maker as maximizing her utility subject to such a constraint if and only if it

satisfies two properties. The first, “No Improving Action Switches” (NIAS),

states that the decisions conditional on the resultant posteriors must be opti-

mal (by revealed preference). The second, “No Improving Attention Cycles”

(NIAC), states that the decision maker cannot improve her utility by redis-

tributing attention across decision problems. This latter property rules out

counterintuitive behavior such as acquiring more information when the stakes

21Indeed, a major justification for their axiomatization of their cost function is based on
sampling problems. See also Morris and Strack (2017).
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are lower.

There have been a couple of approaches to extend these revealed-preference

results to a representation that is posterior-separable. This would allow for

testing whether the cost is actually of this form. To this end, Denti (2019)

strengthens NIAC to “No Improving Posterior Cycles,” which states that the

decision maker cannot improve her utility by redistributing attention not only

across decision problems, but also within decision problems as well by redis-

tributing between individual posteriors. Intuitively, since optimization occurs

posterior by posterior, the problem admits a posterior-separable cost repre-

sentation.

Another approach is that of Caplin et al. (2019), who provide axioms for

different forms of cost representations. For the purposes of this paper, the

relevant one is that of “posterior separability,” as I consider a fixed prior, and

do not consider the counterfactual of what would happen if the prior were

to change.22 While there are some additional technical assumptions that are

needed, the main property that must be satisfied is their axiom, “Separability.”

Roughly, it states the following. Suppose some posteriors {µ} are optimal

when the actions are chosen from some subset A = {a} for some decision

problem. If those posteriors are still feasible (by Bayes’ rule) in combination

with some other set of posteriors {µ′}, there must be some other subset of

actions A′ = {a′} such that the optimal attention strategy is to choose pairs

(µ′, a′), while pairing the same (µ, a) as before. This means that the optimality

of posterior µ for a given action a does not depend on what other posteriors

are chosen with positive probability, and so is a form of separability.

As a final remark, I claimed in Section 2 that all posteriors will be in the

interior of the probability simplex if the slopes of the derivatives of H are

sufficiently high. I formally state and prove a slightly stronger version of this

now, which states that this bound away from the boundary is uniform for all

decision problems where the maximum payoff difference is less than a given

22Some of the pitfalls associated with this are discussed in Mensch (2018). In particular,
if one thinks of information costs as coming from the physical cost of a single experiment,
the representation H cannot remain the same across priors.
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bound.

Suppose that a decision maker faces compact choice set X ⊂ [0, 1] and state

space Θ. Her ex-post utility is u(x, θ), and her cost of information acquisition

is given by the posterior-separable representation from H as given in Section

2.

Lemma A: For any C > 0, there exist ε, κ > 0 such that if

max
x∈X

[max
θ∈Θ

u(x, θ)−min
θ̂∈Θ

u(x, θ̂)] ≤ C

and

c(τ) = κ(H(µ0)− Eτ [H(µ)])

then for all posteriors µ in the support of those chosen by the decision maker,23

µ(θ) ≥ ε.

Proof: Suppose that there is no such ε > 0. Then for every ε > 0 and some θ,

one can consider the sets M1 ≡ {µ : µ(θ) < ε} and M2 ≡ {µ : µ(θ) > µ0(θ)}.
Both sets must have positive measure under τ by Bayes’ rule. Moreover, the

Euclidean distance between any posteriors in M1 and any in M2 must be at

least some d > µ0(θ) − ε. By the fundamental theorem of calculus and the

intermediate value theorem,

∂H

∂µ(θ′)
(µ1)− ∂H

∂µ(θ′)
(µ2) =

∫ 1

0

∑
θ′′∈Θ

∂2H

∂µ(θ′)∂µ(θ′′)
(αµ1+(1−α)µ2)

µ1(θ′′)− µ2(θ′′)

|µ1 − µ2|
dα

=
∑
θ′′∈Θ

∂2H

∂µ(θ′)∂µ(θ′′)
(µ̂)

µ1(θ′′)− µ2(θ′′)

|µ1 − µ2|

for some µ̂ ≡ αµ1 + (1− α)µ2, for some α ∈ [0, 1].

Now consider the Bayes-plausible change where, while actions are kept

fixed, beliefs in the former set are moved closer to those in the latter, and vice

versa, as defined as follows. Let σ1 and σ2 be the probability measures over x

23Caplin and Dean (2013) prove a similar yet slightly weaker result in demonstrating
their Theorem 1, showing that posteriors must lie on the interior if the partial derivatives
of H are unbounded at the boundaries of the probability simplex.
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defined by the pushforward measures from x(µ) and τ for the sets M1 and M2,

respectively. Consider the probability integral transforms from σ1 and σ2 to

the uniform distribution over s ∈ [0, 1], and let ν1 and ν2 be the mappings back

to the respective original beliefs µ1(·|x) and µ2(·|x). Then for each s ∈ [0, 1],

consider changes in the beliefs in M1 in the direction of ν2(·|s) − ν1(·|s), and

for M2 in the direction of ν1(·|s) − ν2(·|s). The marginal decrease in cost for

this is given by the Fréchet derivatives

τ(M1)

∫ 1

0

∑
θ′∈Θ

κ
∂H

∂µ(θ′)
(ν1(·|s))[ν2(θ′|s)− ν1(θ′|s)]ds

+
τ(M1)

τ(M2)
τ(M2)

∫ 1

0

∑
θ′∈Θ

κ
∂H

∂µ(θ′)
(ν2(·|s))[ν1(θ′|s)− ν2(θ′|s)]ds

= τ(M1)

∫ 1

0

∑
θ′,θ′′∈Θ

κ
∂2H

∂µ(θ′)∂µ(θ′′)
(ν̂(·|s))ν1(θ′′|s)− ν2(θ′′|s)

|ν1(·|s)− ν2(·|s)|
[ν2(θ′|s)−ν1(θ′|s)]ds

≥ τ(M1)κmd > 0

where the coefficient in front of the second integral is due to the changes in

beliefs being scaled by τ(M1)
τ(M2)

relative to those in the first, the first inequality

originates from the distance between any two elements in M1 and M2 as dis-

cussed above, and the second inequality originates from the strong convexity

of H, i.e. H + mI is negative semi-definite for some m > 0. Meanwhile,

the marginal loss in the payoff due to the changes in conditional choice are

bounded by 2Cτ(M1). Hence, for κ sufficiently large, the decrease in cost will

be larger than the decrease in payoff, and hence is an improvement for the

decision maker. �
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Appendix B: Proofs

Proof of Lemma 1: The first step, analogous to Myerson (1981), establishes

that given the information acquisition of the buyers, it is sufficient for them to

report their posteriors. Let Y be the action space inM, and τ be the distribu-

tion of posteriors that the buyer acquires in equilibrium. For each µ ∈ supp(τ),

the buyer will choose some strategy ξ : µ→ ∆(Y ). Let x̂(ξ(µ1), ..., ξ(µN)) be

the vector of probabilities that buyers receive the item by playing according

to strategy ξ; similarly, define t̂(ξ(µ1), ..., ξ(µN)) to be the vector of expected

transfers. One can then define the direct revelation mechanismM′ where each

buyer reports her posterior µi, and the probabilities of receiving the item and

transfers are given by

x(µ1, ..., µN) = x̂(ξ(µ1), ..., ξ(µN))

x(µ1, ..., µN) = x̂(ξ(µ1), ..., ξ(µN))

Hence each buyer receives the same expected utility as inM for each possible

report of posterior; since ξ was an equilibrium strategy in M, it is optimal in

M′ to report one’s true posterior.

Similarly, any distribution of posteriors τ ′ will yield a weakly lower payoff

than τ , as the same set of payoffs is feasible in M′ as from acquiring τ ′ in

mechanismM and then choosing ξ(µ) for each µ ∈ supp(τ ′). Hence it will be

optimal to acquire τ in M′.

The above shows that it is without loss to consider mechanisms in which

the seller recommends that the buyer acquire τ , and report their posterior µ;

there will then be a unique x for each reported µ. It is also clear that for each

x, there must be a unique t, since otherwise the buyer could misreport her type

µ in order to get a lower t. To complete the proof, one must show that for

each x, there is a unique µ ∈ supp(τ) that receives the item with probability x.

Suppose otherwise; let 1x(s) be the indicator function on the signal space that

takes the value 1 if, upon receiving signal s, the buyer receives the item with

probability x, and 0 otherwise. This is a measurable function with respect to
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π, and so the buyer’s ex-ante payoff is given by

∑
θ∈Θ

∫
S

∫ 1

0

(xθ − t(x))1x(s)µ0(θ)dxdπ(s|θ)−H(µ0) +

∫
∆(Θ)

H(µ)dτ(µ)

where t(x) is the transfer associated with x. If the set of signal realizations

for which the same x is chosen is of measure greater than 0 with respect to

π, then there exists π̂ in which all signal realizations s for which x is chosen

are merged into one signal ŝ, upon whose reception the buyer again chooses

x. If µ(·|s) is not the same almost everywhere for all such s, then the cost

of information acquisition is strictly lower, and hence an improvement for the

buyer. Hence it is without loss that there is a unique µ for which x is chosen

almost everywhere. �

Proof of Lemma 2: To see that (IR-A) is implied by the other constraints,

let x∗ ≡ min{x ∈ X}. By standard single-crossing arguments from (IC-I),

Eµ(·|x)[θ] is increasing in x. Thus, for all x ∈ X,

x∗Eµ(·|x)[θ]− t(x∗) ≥ x∗Eµ(·|x∗)[θ]− t(x∗) ≥ 0

Furthermore, the buyer can acquire no information, which is costless. There-

fore, by (IC-I),∫ ∫
[x(µ)θ − t(x(µ))]dµ(θ)dτ(µ)− [H(µ0)−

∫
H(µ)dτ(µ)] ≥

∫ ∫
[x∗θ − t(x∗)]dµ(θ)dτ(µ)− [H(µ0)−H(µ0)]

=

∫
[x∗θ − t(x∗)]dµ0(θ)

≥ 0

To see that (IC-I) is implied by (IC-A), suppose that for some subset of

allocations Y = {x} that are recommended with positive probability according
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to π, there is some action x̂(x) that the buyer strictly prefers, i.e.

∑
Θ

∫
Y

[x̂(x)θ − t(x̂(x))]µ0(θ)dπ(x|θ) >
∑

Θ

∫
Y

[xθ − t(x)]µ0(θ)dπ(x|θ)

This same ex-interim payoff could be achieved by using the recommendation

strategy π̂(x|θ) where, instead of recommending x, x̂(x) is recommended, i.e.

dπ̂(x|θ) =

0, x ∈ Y

dπ(x|θ) +
∫
y∈Y :x̂(y)=x

dπ(y|θ), x /∈ Y

Moreover, since H is concave, the information cost is reduced because the

buyer no longer distinguishes between the cases where x was recommended and

{y ∈ Y : x̂(y) = x} was recommended, and instead generates a single posterior

that is the weighted average (according to τ) of µ(·|x) and {µ(·|y) : x̂(y) = x}.
Thus the buyer could improve her expected payoff at least as much by an

ex-ante deviation. �

Proof of Lemma 3: By Lemma A, µ(θ|x) > ε,∀θ, x. Hence H(µ(·|x)) and
∂H
∂µ(θ)

(µ(·|x)) are bounded. By Bayes’ rule and Fubini’s theorem, the buyer’s

objective can be written as the linear operator of π(·|θ),

F (π) ≡
∑
θ∈Θ

∫
X

[xθ − t(x) +H(
dπ(x|θ)µ0(θ)∑

θ′∈Θ dπ(x|θ′)µ0(θ′)
)]dπ(x|θ)µ0(θ) (15)

where dπ(x|θ)µ0(θ)∑
θ′∈Θ dπ(x|θ′)µ0(θ′)

is the Radon-Nikodym derivative of the measure dπ(x|θ)µ0(θ)

with respect to
∑

θ′∈Θ dπ(x|θ′)µ0(θ′). By assumption, since π is a valid sig-

nal (i.e. it generates posteriors via Bayes’ rule), the measures {π(·|θ)}θ∈Θ are

mutually absolutely continuous and so this Radon-Nikodym derivative is well

defined.

Consider the set of finite signed measures {{π̂(·|θ)}θ∈Θ} that are absolutely

continuous with respect to π, and endow it with the norm

‖π̂‖ = [
∑
θ∈Θ

∫
(
dπ̂(x|θ)
dπ(x|θ)

)2dπ(x|θ)µ0(θ))](
1
2

)
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Thus {{π̂(·|θ)}θ∈Θ} constitutes a normed vector space. Of particular interest

are those π̂ such that π̂(·|θ) is a conditional probability measure. For such π̂,

consider the vector ε(π̂ − π). As the linear operator

A(x, θ) = xθ − t(x) + h(x, θ)

is bounded, in the limit,

lim
ε→0

1

ε‖π̂ − π‖
[F (π+ ε(π̂−π))−F (π)− ε

∑
θ∈Θ

∫
X

A(x, θ)d(π̂−π)(x|θ)µ0(θ)] = 0

and so F is Fréchet differentiable. Hence in order to be optimal, one must

have that for all conditional probability measures π̂,

∑
θ∈Θ

∫
X

A(x, θ)d(π̂ − π)(x|θ)µ0(θ) = 0

and so A(x, θ) = A(x′, θ) almost everywhere with respect to π. Thus (3) is

necessary.

For the sufficiency of (3), suppose that π is suboptimal, and that instead

some π̂ is better for the buyer. First, the conditional distribution µ̂(·|x) must

be weak∗ continuous with respect to x almost everywhere: suppose not, and

that there exists some point x∗ around which there exists ε > 0 such that, for

every δ > 0, the open ball Bδ(x
∗) contains two subsets of positive measure

Xε
1, X

ε
2 such that |µ(·|x1) − µ(·|x2)| > ε, for all xi ∈ Xε

i , respectively. Then

for sufficiently small δ, the alternative signal that recommends x∗ instead of

any other x ∈ Bδ(x
∗) will be an improvement, as the information cost will be

strictly lower by the strong concavity of H, while by the compactness of M,

the loss from recommending x∗ instead vanishes as δ → 0. That is, indicating

this alternative recommendation by π̃δ, for small enough δ,

∑
θ∈Θ

∫
X

[xθ − t(x) +H(
dπ̃δ(x|θ)µ0(θ)∑

θ′∈Θ dπ̃δ(x|θ′)µ0(θ′)
)]dπ̃δ(x|θ)µ0(θ)
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−
∑
θ∈Θ

∫
X

[xθ − t(x) +H(
dπ̂(x|θ)µ0(θ)∑

θ′∈Θ dπ̂(x|θ′)µ0(θ′)
)]dπ̂(x|θ)µ0(θ)

=
∑
θ∈Θ

π̂(Bδ(x
∗)|θ)[xθ − t(x) +H(

∫
Bδ(x∗)

dπ̃δ(x|θ)µ0(θ)∑
θ′∈Θ

∫
Bδ(x∗)

dπ̃δ(x|θ′)µ0(θ′)
)]

−
∑
θ∈Θ

∫
Bδ(x∗)

[xθ − t(x) +H(
dπ̂(x|θ)µ0(θ)∑

θ′∈Θ dπ̂(x|θ′)µ0(θ′)
)]dπ̂(x|θ)µ0(θ)

> 0

Next, consider the case where π̂ is absolutely continuous with respect to π.

For any α ∈ (0, 1), consider the conditional probability measures (1−α)π+απ̂.

This will also be an improvement for the buyer over π, since

∑
θ∈Θ

∫
X

[xθ − t(x) +H(
dπ(x|θ)µ0(θ)∑

θ′∈Θ dπ(x|θ′)µ0(θ′)
)]dπ(x|θ)µ0(θ) (16)

< (1− α)
∑
θ∈Θ

∫
X

[xθ − t(x) +H(
dπ(x|θ)µ0(θ)∑

θ′∈Θ dπ(x|θ′)µ0(θ′)
)]dπ(x|θ)µ0(θ)

+α
∑
θ∈Θ

∫
X

[xθ − t(x) +H(
dπ̂(x|θ)µ0(θ)∑

θ′∈Θ dπ̂(x|θ′)µ0(θ′)
)]dπ̂(x|θ)µ0(θ)

≤
∑
θ∈Θ

∫
X

[xθ−t(x)+H(
((1− α)dπ + αdπ̂)(x|θ)µ0(θ)∑

θ′∈Θ((1− α)dπ + αdπ̂)(x|θ′)µ0(θ′)
)]((1−α)dπ+αdπ̂)(x|θ)µ0(θ)

(17)

where the second inequality is from merging recommendations of the same x,

and the fact that π 6= π̂ and H is concave. Subtracting (16) from (17), dividing

by α, and taking the limit as α → 0, this becomes the Fréchet derivative as

above in the direction of π̂ − π:

0 <
∑
θ∈Θ

∫
X

[xθ − t(x) + h(x, θ)](dπ̂ − dπ)(x|θ)µ0(θ)

yielding that for some positive measure of x with respect to π and some positive
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measure of x̂ with respect to both π, π̂,∑
θ∈Θ

[xθ − t(x) + h(x, θ)] <
∑
θ∈Θ

[x̂θ − t(x̂) + h(x̂, θ)]

and so, for some θ,

xθ − t(x) + h(x, θ) < x̂θ − t(x̂) + h(x̂, θ)

contradiction.

Now suppose that π̂ is singular with respect to π. Since π is a recom-

mendation strategy, for any x ∈ X, the open ball of radius ε has measure

π(Bε(x)|θ) > 0. Then construct the alternative measure π̂ε defined by parti-

tioning [0, 1] into intervals I of length between ε/2 and ε whose endpoints are

not mass points of π̂, and set, for all x ∈ I,

dπ̂ε(x|θ) =

∫
I∩X dπ̂(x̂|θ)∫
I∩X dπ(x̂|θ)

dπ(x|θ)

Clearly, π̂ε is absolutely continuous with respect to π. By the compactness of

M and the Portmanteau theorem,

lim
ε→0

∑
θ∈Θ

∫
X

[xθ − t(x) +H(
dπ̂ε(x|θ)µ0(θ)∑

θ′∈Θ dπ̂ε(x|θ′)µ0(θ′)
)]dπ̂ε(x|θ)µ0(θ)

≥ lim
ε→0

∑
θ∈Θ

∫
X

[xθ − t(x) +H(
dπ̂(x|θ)µ0(θ)∑

θ′∈Θ dπ̂(x|θ′)µ0(θ′)
)]dπ̂ε(x|θ)µ0(θ)

=
∑
θ∈Θ

∫
X

[xθ − t(x) +H(
dπ̂(x|θ)µ0(θ)∑

θ′∈Θ dπ̂(x|θ′)µ0(θ′)
)]dπ̂(x|θ)µ0(θ)

But for low enough ε, that would mean that π̂ε is also better than π, which we

saw was impossible for any measure that is absolutely continuous with respect

to π. �

Proof of Lemma 4: I define a system of partial differential equations defining

the motion of (x, t(x), µ(·|x)), and show that they have a unique solution.
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I then verify that the necessary and sufficient conditions of Lemma 3 are

satisfied.

I start by deriving a differentiable law of motion that satisfies (3), which will

be used to show sufficiency. Thus I show that there exists a differentiable locus

of points on which the buyer’s choice has its support; one can then convert it

to a mechanism in recommendation strategies by dropping the values of x that

are not in the support, and invoking Lemma 3 on the remaining values of x to

verify that it is optimal for the buyer. First, to define t′(x), any solution that

is optimal for the buyer must satisfy (IC-I). It is well known from Myerson

(1981) that in order to do so,

lim
ε→0

t(x+ ε)− t(x)

ε
= Eµ(·|x)[θ] (18)

So, one can define

∂h

∂x
(x, θ) ≡ lim

ε→0

h(x+ ε, θ)− h(x, θ)

ε
= Eµ(·|x)[θ]− θ (19)

This implicitly defines the law of motion of beliefs from µ(·|x). By (2), for

µ(·|x) to be differentiable,

∂h

∂x
(x, θ) =

∑
θ′′∈Θ

∂2H

∂µ(θ′′)∂µ(θ)
(µ(·|x))

∂µ

∂x
(θ′′|x)(1− µ(θ|x))

−
∑
θ′′∈Θ

∑
θ′ 6=θ

∂2H

∂µ(θ′′)∂µ(θ)
(µ(·|x))

∂µ

∂x
(θ′′|x)µ(θ′|x) (20)

Thus, for any constant Cµ(·|x),

∑
θ′∈Θ

∂2H

∂µ(θ′)∂µ(θ)
(µ(·|x))

∂µ

∂x
(θ′|x) = −(θ + Cµ(·|x)),∀θ (21)

is a solution to (20), as by plugging these values into (18), (19) is satisfied.
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Since H is strongly concave, the Hessian H(µ(·|x)) is negative definite, and so
∂µ
∂x

(θ1|x)
...

∂µ
∂x

(θK |x)

 = −H−1(µ(·|x))


θ1 + Cµ(·|x)

...

θK + Cµ(·|x)

 (22)

Lastly, in order to be a probability distribution,
∑

θ∈Θ
∂µ
∂x

(θ|x) = 0, which

means that, indicating the (i, j)th entry of H−1 by H−1
(i,j),

Cµ(·|x) = −
∑K

i=1

∑K
j=1 θjH

−1
(i,j)(µ(·|x))∑K

i=1

∑K
j=1 H−1

(i,j)(µ(·|x))
(23)

It now remains to be shown that the system of differential equations defined

by (18) and (22) has a solution, in order to demonstrate that the assumption of

differentiability yields a valid solution. Since H is twice Lipschitz continuously

differentiable and strongly concave, H(µ) is Lipschitz continuous in µ and

bounded away from 0, and so H−1 is Lipschitz continuous as well. Lastly,

by (23), Cµ(·|x) is defined by the ratio of Lipschitz continuous functions, and

so Cµ is itself Lipschitz continuous in µ. By the Picard-Lindelöf theorem

(Coddington and Levinson, Theorem 5.1), there exists an interval [x−a, x+b]

on which the system (x, t(x), µ(·|x)) has a unique solution.

By the fundamental theorem of calculus, it then follows that (3) is satisfied

for all pairs x, x′ ∈ [x− a, x + b]. Hence any distribution τ over {µ(·|x) : x ∈
[x−a, x+ b]} is optimal for the buyer given prior µ0 =

∫
dτ(µ(·|x)) by Lemma

3, and so (18) and (22) are sufficient for (IC-A) to be satisfied, with

∂

∂x
{Eµ(·|x)[θ]} = −

∑
θ,θ′∈θ

[
∂2H

∂µ(θ)∂µ(θ′)
(µ(·|x))]

∂µ

∂x
(θ′|x)

∂µ

∂x
(θ|x) > 0 (24)

as is easily derived from (18) and (22), which is positive due to the negative-
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definiteness of the Hessian matrix.24

To see that one can set [x − a, x + b] = [0, 1], suppose that the maximal

such value of a were less than x. Beliefs µ(·|x− a) must still be in the interior

of the simplex by Lemma A since x + b − t(x + b) − (x − a) + t(x − a) ≤
b − a + max{θ ∈ Θ}. Thus, the conditions of the Picard-Lindelöf theorem

are still satisfied, and so this cannot be the supremum. The same reasoning

applies to b.

For necessity, one must show that any incentive-compatible solution to

the buyer’s problem must be identical to that given above. To do so, fix

x∗, and suppose that there exists τ̂ that places positive measure, for some

subset of allocations {x}, on beliefs (t̂(x), µ̂(·|x)) 6= (t(x), µ(·|x)), where the

beliefs on the right-hand side are those derived from (18) and (22). Consider

the distribution τ̃ over {µ(·|x)} whose pushforward measure over x ∈ [0, 1] is

uniform. Then, by Lemma 3, ατ̂ + (1 − α)τ̃ is optimal for the buyer for any

α ∈ (0, 1) given prior µ̃0 = αµ0 +
∫
{µ(·|x)} dτ̃(µ(·|x)). It is immediate that in

order to satisfy (IC-I), the transfers conditional on x must be the same under

the mechanisms that generate τ̂ and τ̃ , respectively. Thus, by (2) and (3),

H(µ̂(·|x)) +
∂H

∂µ(θ)
(µ̂(·|x))(1− µ̂(θ|x))−

∑
θ′ 6=θ

∂H

∂µ(θ′)
(µ̂(·|x))µ̂(θ′|x)

= H(µ(·|x)) +
∂H

∂µ(θ)
(µ(·|x))(1− µ(θ|x))−

∑
θ′ 6=θ

∂H

∂µ(θ′)
(µ(·|x))µ(θ′|x) (25)

Multiplying the above by µ̂(θ|x) and µ(θ|x), then summing over θ ∈ Θ and

taking the difference between the former and the latter, one gets

∑
θ∈Θ

(
∂H

∂µ(θ)
(µ(·|x))− ∂H

∂µ(θ)
(µ̂(·|x)))(µ(θ|x)− µ̂(θ|x)) = 0 (26)

By the intermediate value theorem, there exists some α ∈ [0, 1] such that for

24As remarked in the discussion following Lemma 3, any set of triplets (x, t(x), µ(·|x))
that satisfies (3) and on which τ has its support is incentive compatible, and so the mono-
tonicity of Eµ(·|x)[θ] is implied anyway.
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µ̃ ≡ αµ(·|x) + (1− α)µ̂(·|x),

∂H

∂µ(θ)
(µ(·|x))− ∂H

∂µ(θ)
(µ̂(·|x)) =

∑
θ′∈Θ

∂2H

∂µ(θ)∂µ(θ′)
(µ̃)(µ(θ′|x)− µ̂(θ′|x)) (27)

Combining (26) and (27), one gets

∑
θ∈Θ

∑
θ′∈Θ

∂2H

∂µ(θ)∂µ(θ′)
(µ̃)(µ(θ′|x)− µ̂(θ′|x))(µ(θ|x)− µ̂(θ|x)) = 0

But by the negative-definiteness of H, the left-hand side must be negative,

contradiction. �

Proof of Theorem 1: By Lemmas 3 and 4, the contour mechanism satisfies

(IC-A) and (IC-I). Since t(0) < 0 and (IC-I) is satisfied, (IR-I) is satisfied by

standard arguments (e.g. Myerson, 1981). Lastly, (IR-I) implies (IR-A) by

revealed preference:

τ ∈ arg max
σ∈∆(∆(Θ))

∫ ∫
[x(µ)θ − t(x(µ))]dµ(θ)dσ(µ)− [H(µ0)−

∫
H(µ)dσ(µ)]

=⇒
∫ ∫

[x(µ)θ − t(x(µ))]dµ(θ)dτ(µ)− [H(µ0)−
∫
H(µ)dτ(µ)] ≥ −t(0)

≥ 0

Hence all four constraints are satisfied. �

Proof of Proposition 2: Immediate from (18) and (22) defining an au-

tonomous system of differential equations. �

Proof of Theorem 3: I first establish that an optimal mechanism exists. It

is clear that any contour mechanism’s revenue can be increased if t(0) < 0, and

so it is without loss of optimality to restrict attention to ones with t(0) = 0.

Within this set, let {Cm}∞m=1 be a sequence of such contour mechanisms, and

let τm be the corresponding distributions over posteriors. By Lemma A, there

exists ε > 0 such that for all m, µ(θ|x) ≥ ε. As shown in the proof of Lemma

4 in equations (18) and (22), the functions t′(x) and ∂µ
∂x

(·|x) are Lipschitz
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continuous on any compact set in the interior of the simplex, no matter what

µ(·|x) is, and so {tm} and {µm(·|x)} are equi-Lipschitz continuous. Therefore,

by the Arzelà-Ascoli theorem, there exists a subsequence of {(Cm, τm)}∞m=1

such that Cm → C uniformly and τm → τ in the weak∗ topology, with support

within the same compact set. By Coddington and Levinson, Theorem 7.1, the

solutions of differential equations for a sequence of starting points converge

uniformly to a solution of the differential equations for the limit point as well,

so the limit values of (t(x), µ(·|x)) in C satisfy (3). Therefore τ is an incentive-

compatible distribution by Lemma 3. This implies that the set of feasible

payoffs to the seller is compact, and so a maximum exists.

Given the existence of an optimal mechanism, it follows that by Theorem 1,

any implementable mechanism can be expressed by some C. As vC(µ) = −∞
for all µ not contained in C, the support of co(vC) must be contained in C with

probability 1. Hence the mechanism satisfying (8) is optimal if and only if it

is optimal overall. That t(0) = 0 follows from being able to increase t(x) by

some ε > 0 without violating either (IC-A) or (IR-I) for µ otherwise. �

Proof of Corollary 4: This follows immediately from Kamenica and Gentzkow

(2011, Proposition 4 in their Online Appendix). �

Proof of Proposition 5: Suppose that, given C, some τ is optimal such that

x∗ ≡ sup{x : ∃µ ∈ supp(τ) : x(µ) = x} < 1. Then the mechanism Ĉ in which

1−x∗ is added to all values of x ≤ x∗, and all triplets corresponding to x > x∗

are excluded, also satisfies (3). Thus τ remains optimal, where the choice of

x under Ĉ, x̂(µ) equals x(µ) + 1− x∗, and t(x) = t̂(x), by Proposition 2. By

Lemma 4, one can then complete Ĉ to apply to values of x < 1 − x∗. Since,

by (18), t̂′(x) > 0, one can then increase t̂ by
∫ 1−x∗

0
t̂′(x)dx while maintaining

(3). �

Proof of Theorem 6: For each choice of C, there will either be as much

information revelation as possible in the case of convex t̃, or none in the case

of concave t̃, by Kamenica and Gentzkow (2011, Proposition 2). Thus it must

also be true for the optimal C. �

Proof of Lemma 5: Fix τ , and suppose that it is not of the form described
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in the statement of the lemma. The first step is to show that there is a mean-

preserving spread of this form. With binary states, one can rewrite (12) as∫ 1

µ̂

x(µ)dτ(µ) =
1− [1− τ(µ < µ̂)]N

N

Differentiating this when it holds with equality, one gets

−x(µ̂)dτ(µ̂) = −[τ(µ < µ̂)]N−1dτ(µ̂)

=⇒ τ(µ < µ̂) = [x(µ̂)]
1

N−1

=⇒ dτ(µ) =
1

N − 1
[x(µ)]

1
N−1

−1x′(µ)dµ (28)

with boundary condition τ(µ ≤ µ̄) = 1, where µ̄ ≡ µ̄. Let

µ∗ ≡ inf{µ̂ : τ(µ < µ̃) = [x(µ̃)]
1

N−1 ,∀µ̃ > µ̂}

Note that (28) does not depend on the exact distribution below µ. Thus, to

find a mean-preserving spread, one need only consider the distribution between

µ and µ∗.

I show that for any other τ satisfying (12), there exists a mean-preserving

spread that satisfies (12); by Zorn’s lemma, there will then be a maximal

element, that must be of the form of the lemma. First, suppose that there is

an atom at some µ∗ ∈ (µ, µ∗). Then there exists δ > 0 such that for sufficiently

small ε, (12) does not hold with equality at µ̂,∀µ̂ ∈ (µ∗, µ∗ + ε) or else (12)

would be violated at µ∗. Moreover,

lim
ε→0

τ(µ ∈ (µ∗ − ε, µ∗ + ε)) = τ(µ∗)

Consider the following mean-preserving spread: replace τ by τ̂ ε which, for all

µ ∈ [µ∗ − ε2, µ∗ + ε], asigns all mass to {µ∗ − ε2, µ∗ + ε}, while preserving

Eτ̂ε [µ] = µ0. By Bayes’ rule,

lim
ε→0

τ(µ ∈ [µ, µ∗−ε2])+
1

1 + ε
τ(µ∗) ≤ lim

ε→0
τ̂ ε(µ < µ∗+ε) ≤ lim

ε→0
τ(µ ∈ [µ, µ∗+ε)\{µ∗})+

1

1 + ε
τ(µ∗)
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=⇒ lim
ε→0

τ̂ ε(µ < µ∗ + ε) = lim
ε→0

τ(µ < µ∗ + ε)

and so τ̂ ε does not violate (12) at µ∗ + ε. For all µ ≤ µ∗ − ε2, the right-hand

side of (12) is the same as under τ , while by Jensen’s inequality,∫ 1

µ

x(s)dτ̂ ε(s) ≤
∫ 1

µ

x(s)dτ(s)

Hence (12) is satisfied everywhere by τ̂ ε for ε sufficiently small.

Alternatively, suppose that there are no such atoms. Then τ is continuous

for µ ∈ (µ, µ∗). Consider µ∗ ∈ supp(τ) such that µ∗ ∈ (0, µ∗) and (12) does not

hold with equality. By assumption, such a point exists. Then for sufficiently

small ε, (12) does not hold with equality for all µ ∈ (µ∗− ε2, µ∗+ ε). Thus the

construction of the previous paragraph can be used to create a mean-preserving

spread that does not violate (12) here either.

Finally, note that for a fixed µ, E[µ] is decreasing in µ∗. There is therefore

a unique µ∗ for which Eτ [µ] = µ0. If one increases µ, then if τ(µ) does

not increase as well, the new resultant distribution τ̂µ will strictly first-order

stochastically dominate τ . As this implies Eτ̂µ [µ] > µ0, this is impossible. �

Proof of Proposition 7: By Jensen’s inequality, any mean-preserving spread

of any τ is a weak improvement for the seller. By Lemma 3, any τ has a feasible

mean-preserving spread unless it satisfies (12) with equality above some µ∗,

and no other posterior aside from µ is in the support. Hence some such τ will

be optimal. That this can be implemented by a second-price auction with a

reserve price r can be seen by setting r =
∫ µ∗
µ
t̃′(µ)dµ and using the revenue

equivalence theorem (Myerson, 1981). �

Before presenting the proofs of Proposition 8 and Theorem 9, I introduce

some additional notation and a useful lemma, analogous to Lemma 3. Con-

sider the pushforward measure σ as generated by x(µ) where µ is distributed

according to τ . One can then write (12) as∫ 1

x∗
xdσ(x) ≤ 1− σ(x < x∗)N

N
,∀x∗ ∈ [0, 1] (29)
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Lemma B: For any σ satisfying (29), there exists a mean-preserving spread

σ̂ over x ∈ [0, 1] that

(i) satisfies (29) with equality between some x∗ and 1;

(ii) sets σ((0, x∗)) = 0; and

(iii) has an atom at x = 0.

Proof: Suppose that (29) is satisfied for all x ≥ x∗. As in the proof of Lemma

3, it is easy to show that in order to find a mean-preserving spread, one need

only consider the distribution between 0 and x∗, since (29) for x > x∗ does not

depend on the exact distribution of lower values, but only on their cumulative

distribution up to x.

If there is an atom at some x∗ ∈ (0, x∗), then there exists δ > 0 such that

for sufficiently small ε, (29) does not hold with equality at x̂, ∀x̂ ∈ (x∗, x∗+ ε),

or else (29) would be violated at x∗ itself. Moreover,

lim
ε→0

σ(x∗ − ε, x∗ + ε) = σ(x∗)

Consider the following mean-preserving spread: replace σ with σ̂ε, which, for

all x ∈ [x∗ − ε2, x∗ + ε], assigns all mass to {x∗ − ε2, x∗ + ε}, while preserving

Eσ̂ε [x] = Eσ[x]. By Bayes’ rule,

lim
ε→0

σ([0, x−ε2))+
1

1 + ε
σ(x∗) ≤ lim

ε→0
σ̂ε([0, x∗+ε)) ≤ lim

ε→0
σ([0, x∗+ε)\{x∗})+

1

1 + ε
σ(x∗)

=⇒ lim
ε→0

σ̂ε([0, x∗ + ε)) = lim
ε→0

σ([0, x∗ + ε))

and so σ̂ε does not violate (29) at x∗ + ε. For all x ≤ x∗ − ε2, the right-hand

side of (29) is the same as under σ, while
∫ 1

x
sdσ̂ε(s) =

∫ 1

x
sdσ(s). Thus, (29)

is satisfied everywhere for σ̂ε for ε sufficiently small.

Now suppose instead that there are no such atoms. Then σ is continuous

for x ∈ (0, x∗). Consider x∗ ∈ supp(σ) such that x∗ ∈ (0, x∗) and (29) does not

hold with equality. By assumption, such a point exists. Then, for sufficiently

small ε, (29) does not hold with equality for all x ∈ (x∗− ε2, x∗+ ε). Thus the

construction of the previous paragraph can be used to create a mean-preserving
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spread that does not violate (29) here either.

By Zorn’s lemma, there then exists a maximal mean-preserving spread,

which must satisfy (i)-(iii). �

Proof of Proposition 8: Since H is quadratic, H is independent of µ. By

(22) and (23), this means that ∂µ
∂x

(θ|x) is constant, i.e. not dependent on x

or µ. Thus, for any contour mechanism C, all values of µ(·|x) are linear in

x. By (24), so is Eµ(·|x)[θ], and as a result by (18) t is quadratic in x, with

initial conditions t(0) = 0 and t′(0) = Eµ[θ]. Letting σ be the pushforward

measure over X defined by τ and x(µ), any mean-preserving spread σ̂ over X

also defines a mean-preserving spread τ̂ over µ given C, and vice versa. Any

such mean-preserving spread increases the seller’s expected payoff due to t(x)

being quadratic in x (and hence convex). By Lemma B, a maximal mean-

preserving spread places an atom at x = 0 while satisfying (12) with equality

for all x > x∗ for some x∗, while placing measure 0 on x ∈ (0, x∗). By the

revenue equivalence theorem of Myerson (1981), this can be implemented by

a second-price auction with a reserve price. �

Proof of Theorem 9: (i) The information acquisition cost is given by

c(τN) =

∫
[H(µ0)−H(µ)]dτN(µ)

Since the buyer’s probability of winning converges to 0, her expected utility

converges to 0 as well. Thus (with some abuse of notation), τN → µ0 in the

weak∗ topology, and therefore Eµ[θ]→ Eµ0 [θ].

(ii) By (12), EτN [xN(µ)] → 0. By Proposition 2, x′(µ) is determined for

any µ regardless of µ. By (4) and (5), ∂µ
∂x

(θ|x = 0) is continuous in µ since

H is twice continuously differentiable, and so x′(µ) is uniformly continuous on

any closed ball B around µ0 such that B is in the interior of the simplex. As

shown above, for sufficiently large N , τN(µ ∈ B)→ 1, and so |τN − δµ
N
| → 0

in the weak∗ topology, where δµ
N

is the Dirac measure that places probability

1 on µ
N

. By the triangle inequality from (i), this means that µ
N
→ µ0.

(iii) Fix function t(x). Since Eµ(·|x)[θ] is strictly increasing in x by (24),
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t(x) will be a strictly convex function. Hence by Jensen’s inequality, for

any σ, there exists σ̂ that satisfies the properties in Lemma B such that∫ 1

0
t(x)dσ̂(x) >

∫ 1

0
t(x)dσ(x). As in the proof of Proposition 7, any σ that

satisfies these properties can be implemented by a second-price auction with

reserve price r = t(x∗) by the revenue equivalence theorem of Myerson (1981).

Next, for any fixed t, the distribution σ satisfying the properties in Lemma

B that maximizes
∫ 1

0
t(x)dσ(x) is that which sets x∗ = 0, as for any other

value, the distribution over x ∈ [x∗, 1] would remain unchanged by setting

x∗ instead. Since t is a strictly increasing function and the new distribution

first-order stochastically dominates the old one, this increases
∫ 1

0
t(x)dσ(x).

Thus, for fixed t(·), a second-price auction with a reserve price of 0 is optimal.

I now show that in the limit as N → ∞, there is a unique limit value

t(x) of any implementable sequence of {tN(x)}∞N=1, and so one will be able to

invoke the above result to conclude that this form of auction is optimal. First,

consider the sequence of distributions {τN} and their pushforward measures

{σN}. For sufficiently high N , there exists Bayes-plausible τ̂N such that its

pushforward measure σ̂N satisfies (a)-(c) and is a mean-preserving spread of

σN , with some corresponding value of x∗. To see this, by Coddington and

Levinson, Theorem 7.6, for any ε > 0 there exists δ > 0 such that if µ ∈ B̄δ(µ0)

(the closed ball of radius δ around µ0 in the simplex), then the solutions for

(t(x), µ(·|x)) under µ = µ differ from those under µ = µ0 by at most ε in the

Euclidean topology. Consider the function

φN(µ) = µ+
1

2
[µ0 −

∫ 1

0

µ(·|x)dτ̂N(µ(·|x))]

Clearly, φN(µ) = µ if and only if
∫ 1

0
µ(·|x)dτ̂N(µ(·|x)) = µ0. As µ(·|x) is

uniformly continuous in µ ∈ B̄δ(µ0), it follows that for N large enough, |µ −∫ 1

0
µ(·|x)dτ̂N(µ(·|x))| < δ by (12) and (22) for all µ ∈ B̄δ(µ0), as τ converges

to the Dirac measure on µ by (ii). Hence, by the triangle inequality,

|µ0 − φN(µ)| ≤ 1

2
|µ0 − µ|+

1

2
|
∫ 1

0

µ(·|x)dτ̂N(µ(·|x))− µ|
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≤ 1

2
δ +

1

2
δ = δ

and so φN(µ) ∈ B̄δ(µ0). Since φN(µ) is continuous, by the Brouwer fixed

point theorem there exists µ ∈ B̄δ(µ0) such that φN(µ) = µ, which implies

that
∫ 1

0
µ(·|x)dτ̂N(µ(·|x)) = µ0 as required. Thus, given τN and σN , there exist

such τ̂N and σ̂N , respectively, for high enough N .

Let tN and t̂N be the corresponding transfer functions. Consider any sub-

sequence such that σN → σ and σ̂N → σ̂ in the weak∗ topology. For any y, by

the Portmanteau theorem,∫ y

0

σ([0, x))dx ≤ lim inf

∫ y

0

σN([0, x))dx ≤ lim inf

∫ y

0

σ̂N([0, x))dx =

∫ y

0

σ̂([0, x))dx

where the last holds with equality because either σ̂ is absolutely continuous

(if x∗ = 0) or σ̂([0, x∗)) = σ̂(x = 0). Thus, σ̂ is a mean-preserving spread of

σ. Moreover, by the Lipschitz continuity of H, both tN → tµ0 and t̂N → tµ0

uniformly on [0, 1], where t is defined for the contour starting at µ = µ0

(Coddington and Levinson, Theorem 7.1). Since t is also continuous, by the

Portmanteau theorem and the dominated convergence theorem,

lim
N→∞

∫ 1

0

Ntµ0(x)dσN(x) = lim
N→∞

∫ 1

0

NtN(x)dσN(x)

≤ lim
N→∞

∫ 1

0

NtN(x)dσ̂N(x)

= lim
N→∞

∫ 1

0

Ntµ0(x)dσ̂N(x)

= lim
N→∞

∫ 1

0

N t̂N(x)dσ̂N(x)

assuming that limN→∞
∫ 1

0
Ntµ0(x)dσ̂N(x) is finite. Differentiating (29) when

it holds with equality at x yields

x = [σ̂N((0, x))]N−1
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=⇒ dσ̂N
dx

(x) =
(x)

2−N
N−1

N − 1
≤ 2

Nx

Indeed,

lim
N→∞

N
dσ̂N
dx

(x) =
1

x

Since, by (18),

x ·min{θ ∈ Θ} ≤ t(x) ≤ x ·max{θ ∈ Θ}

by the dominated convergence theorem we have (even for x∗ = 0, by defining

for each N at the limit as x∗ → 0)∫ 1

x∗
Ntµ0(x)dσ̂N(x) ≤

∫ 1

x∗
2 max{θ ∈ Θ}dx

=⇒ lim
N→∞

∫ 1

x∗
Ntµ0(x)dσ̂N(x) =

∫ 1

x∗

tµ0(x)

x
dx

As observed earlier, for fixed t(·), setting x∗ = 0 is optimal. Therefore, any

mechanism in the limit is dominated by a second-price auction with reserve

price 0, which yields the revenue as given in (13). �
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