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Abstract
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Using a text-search algorithm allocating patents to crops, I show a negative labor-supply
shock induced a sharp increase in innovation in technologies related to more affected
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1 Introduction

Whether labor abundance/scarcity encourages or discourages technical advance is one of the
oldest debates in economics (Malthus 1959; Ricardo 1951). Intuitively, when a factor such as labor
becomes more expensive, it spurs invention directed to economizing the use of that factor (Hicks
1932; Zeira 1998). On the other hand, a low number of workers reduces the number of potential
users of new technologies (Kremer 1993; Acemoglu 1998). Acemoglu (2010) theoretically shows that
the direction of the effect depends on whether technical advance reduces or increases the marginal
product of labor. Whether labor scarcity may induce technical advance in practice, however, is an
open empirical question (Acemoglu 2010, p. 1071).

Technical advance includes the creation and adoption of new technologies. A few studies test
the effect of labor supply on the adoption of technology (Lewis 2011; Hornbeck and Naidu 2014;
Clemens et al. 2018). However, they do not address the creation of new technologies.

In this paper, I offer an empirical test for the effect of labor supply on the creation of new
technologies. To do so, I utilize a large exogenous shock to the labor supply in the US agricultural
sector caused by the termination of the Bracero agreements between the United States and Mexico
in 1964. The Bracero agreements were a set of three bilateral agreements between the United States
and Mexico to regulate bilateral flows of temporary low-skill labor, spanning 1942–1964 (Clemens
et al. 2018). Varying substantially between crops, Bracero workers accounted for about 11% of the
total seasonal farm workforce in 1964. The exclusion of those workers from the labor force generated
a sharp decline in the labor supply in a very short period.

The first objective of this paper is to document the pattern of the creation of new technologies
caused by this shock to the labor supply. Using a text-search algorithm to allocate patents to crops,
I show that the Bracero exclusion induced a sharp increase in innovation in technologies related
to crops with a higher share of Bracero workers relative to crops with a lower share. Innovators
reacted fast, introducing new technologies right after the termination of the program. Innovation
in technologies related to high-exposed crops remained high more than 15 years after the end of the
program. Thus, the patent data reveal substantial directed technical change towards technologies
related to crops with labor scarcity.

To further ensure the robustness of the results, I instrument the share of Bracero workers by
the average distance from Mexico and the average historical Mexican population in the counties
producing each crop. The IV strategy yields quantitatively similar results.

An alternative robustness check employs patent data to measure the technological similarity
between crops. Utilizing the latter, I calculate the "technically-predicted" exposure of the crops to
the Bracero program, predicted by the exposure of technologically similar crops. I show that the
actual exposure to the Bracero program is not correlated with the technically-predicted exposure
measure. Furthermore, I re-estimated the difference-in-differences regressions controlling for the
technically-predicted exposure, isolating the part in the exposure to the labor-supply shock that is
not predicted by the technical features of the crops. Once again, the estimated effects are similar.
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The second objective of this paper is to study the heterogeneous effect of labor supply on
different types of technology. Using detailed data on labor requirements by production task and
crop, I compare the impact of a labor-supply shock on the creation of technologies related to more
labor-intensive tasks relative to less labor-intensive tasks. Triple difference estimates confirm that
the effect is stronger in technologies related to more labor-intensive production tasks. Assuming that
such technologies tend to be more labor-saving, these results suggest that labor scarcity encourages
the creation of labor-saving technology more than labor-augmenting technology.

In the last part of the paper, I study the impact of the termination of the Bracero program
on the profitability of farm businesses. Using information from the US agricultural census, I show
that more exposed counties experienced a greater decline in farm values after the shock relative
to less-exposed counties. These results, however, are valid only for states that participated in the
Bracero program. Taken together, these results show that a negative shock to the supply of low-
skilled labor, implied by immigration restrictions, is harmful to farm owners even in the medium
and long run, despite the positive technology reaction.

As mentioned earlier, the effect of labor scarcity on the invention of new technology is theoreti-
cally ambiguous. To illustrate the two opposite forces, section 2 summarizes the main results of two
simple models, with different assumptions about the exact way technology is shaping production.1

These models have contradicting predictions about the effect of labor supply on innovation activity.
If technology increases the quantity of production for every level of labor, as the standard macroe-
conomics literature suggests, then an increase in labor supply encourages technological progress.
On the other hand, if new technology replaces workers, an increase in labor supply discourages
technological progress. Taking together, the sign of the effect is theoretically ambiguous and must
be answered empirically. This theoretical framework also motivates the examination of the hetero-
geneous impact of labor scarcity on the creation of labor-saving technologies and labor-augmenting
technologies.

In recent years, there has been an increasing interest in the joint dynamics of artificial intelligence
(AI) technology and the labor market (Aghion et al. 2017; Acemoglu and Restrepo 2018). Whether
an increase in the available labor supply encourages or discourages technological progress is crucial
for the rate of development of AI. If greater labor supply discourages the development of automated
technologies, as suggested by the results of this paper, an initial positive shock to AI technologies
will increase the available supply of labor (or reduce wages) and hence discourages the development
of further AI technology. In other words, the discouraging effect of labor abundance on the creation
of labor-saving technologies limits the long-run growth rate of AI technology on the one hand, and
unemployment due to automation on the other hand (Nakamura and Zeira 2018; Acemoglu and
Restrepo 2018).

The effect of labor supply on technological progress is a fundamental question in economic
history. The famous Habakkuk hypothesis claims that US labor scarcity in the 19th century induced

1 The models themselves are presented in Appendix B.
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rapid technological progress relative to Britain (Habakkuk 1962). Similarly, Allen (2009) claims
that high wages in 18th century Britain were a preponderant reason for the Industrial Revolution
occurring there as opposed to elsewhere.2 This paper contributes to the economic history literature
by providing causal evidence for the impact of labor supply on the creation of new technology.

The claim that the termination of the Bracero program increased the pace of labor-saving
technological innovation is not new. For example, Runsten and LeVeen (1981) argued that

"For many years, California agriculture has relied upon abundant supplies of cheap
foreign labor, coming mainly from Mexico. As the rural labor market maintained seg-
mented from the rest of the economy, this allowed the mechanization of these specialty
crops to be postponed. In 1964, when the use of Mexican labor became constrained by
the end of the Bracero Program, a strong inducement was given to introduce mechanical
harvesting techniques."

This claim, however, has never been rigorously tested.
Clemens et al. (2018) exploit the termination of the Bracero program to study the effect of labor

scarcity on the labor market. They use state-level variation in the exposure to the Bracero program
to show that the program’s termination did not affect local wages or employment. They also provide
supporting evidence for the positive effect of labor scarcity on the adoption of already-existing
technologies. The current paper complements their findings by offering an explicit mechanism for
their results: the positive innovation response to labor scarcity can dampen the wage response.3

This article contributes to the literature on the effect of factor supplies on technological progress.
Newell et al. (1999) and Popp (2002) demonstrated that increased energy prices re-direct innovation
to more energy-efficient technology. Hanlon (2015) found that the scarcity of US cotton exported
to England during the US Civil War induced the development of new technologies that augmented
Indian cotton. Closer to the current topic, Lewis (2011) and Hornbeck and Naidu (2014) have shown
that areas with a lower relative supply of low-skilled labor adopted more advanced technology.4

The results of this paper are also relevant for understanding the impact of immigration on
technological change. Most of the literature has focused on high-skilled immigration, which affects
the supply side of innovation (Hunt and Gauthier-Loiselle 2010; Kerr and Lincoln 2010; Borjas and
Doran 2012; Moser et al. 2014; Moser and San 2020). In contrast, this paper studies the technological
response to limits on low-skilled foreign labor.

Two recent working papers by Doran and Yoon (2019) and Andersson et al. (2019) study the
effects of mass migration waves on technological innovation using geographical variation in receiving
and sending communities, respectively. The current research complements those papers in two ways.
First, my identification strategy takes advantage of an exogenous policy shock that affected only

2 See also Hayami and Ruttan (1970) and Alesina et al. (2018) for similar arguments.
3 Methodologically, unlike Clemens et al. (2018) that use state-level variation in the exposure to the Bracero
program, I use crop-level variation that better captures changes in innovation.

4 See also Lafortune et al. (2015), Lew and Cater (2018), and Abramitzky et al. (2019) for similar results.
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low-skilled workers. Moreover, it does so in the context of a guest worker program that enables
to isolate the impact of a pure labor-supply shock from other changes usually accompanied by
conventional immigration, coming from the role of the immigrants as citizens, consumers, and
potential inventors.5 Second, I use patents issued in the United States, the technological leader of
the time. Thus, these patents are more likely to reflect frontier inventions. This is aided by the fact
that my variation is at the crop level, as opposed to spatial variation. Giving that technological
invention is to a large extent globally applicable, the variation in this paper is better able to capture
groundbreaking inventions, as opposed to local adjustments of already-existing technologies.

Finally, this paper also contributes to the literature on the impact of immigration on firms’
outcomes. Several papers have found a positive impact of increasing high-skilled immigration on
the productivity, size, and profits of firms (Kerr and Lincoln 2010; Ghosh et al. 2014; Doran et al.
2014; Peri et al. 2015; Beerli et al. 2021). Brunello et al. (2020) find that low-skilled immigration
also has a small but positive effect on firms’ profits. The current paper strengthens the latter results
by suggesting that, despite the positive technology reaction to low-skilled immigration declining,
the farmers’ profits (embedded at the farmland values) go down.

2 Theoretical Framework

Theoretically, the impact of labor supply on technological progress depends on how one assumes
technology is shaping production. In Appendix B, I build two simple models to illustrate this
point. I show that if technology increases the quantity of output for every level of labor, as the
standard macroeconomics literature suggests, then an increase in labor supply encourages techno-
logical progress. On the other hand, if new technology replaces workers, an increase in labor supply
discourages technological progress. Taking together, the sign of the effect is theoretically ambiguous
and must be answered empirically.

Importantly, how technology is introduced in each model offers a conceptual framework for dis-
tinguishing between different types of technological improvements. For each technological invention,
one should consider whether it is more similar to one type of technology or the other. Consider, for
example, the invention of the tomato harvester. For a given amount of workers (and land), it does
not change the production quantity. However, it can economize the workers needed to produce the
same amount of output; therefore, it better aligns with the labor-saving technology type. On the
other hand, a new fertilizer, for instance, increases the production for a given amount of land and
labor; hence, it better aligns with the labor-augmenting technology type. Using that classification
of technologies, the theory suggests different effects for a change in labor supply on the two types
of inventions. Section 6 further explores this.

5 See Moser and San (2020) for the effect of the 1920s quota acts on high-skilled scientists and inventors.
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3 Historical Background and Data

3.1 The Bracero Program

Existing from 1942 until 1964, the Bracero program allowed over four million Mexican agricul-
tural workers to migrate legally, making it the most extensive guest worker program in the history
of the United States (Kosack 2016).

The wartime Bracero program started on August 4, 1942, when the US government concluded
with Mexico an agreement to use Mexican agricultural labor on US farms. From 1942 to 1947, more
than 200,000 agricultural workers entered the United States from Mexico. The program’s post-war
era began in 1948 when Braceros contracted directly with US employers. Approximately 200,000
Mexican legal workers entered the United States between 1948 and 1950. In August 1951, Congress
approved Public Law 78, which served as the statutory basis for Bracero contracting until it expired
in December 1964. By June 1952, the Bracero system became a permanent component of US farm
labor. During the period 1952-1959, on average, 335,000 Mexican workers were annually employed
on US farms (Craig 1971).

Opposition to the Bracero program solidified in the early 1960s when more interest groups had
joined the fight against imported Mexican labor. In March 1962, the US government required
farmers to offer Braceros at least the statewide average wage that in some Bracero-using regions
was considerably higher than the area wage. The program finally terminated at the end of 1964.
The principal policy goal of excluding Braceros was to improve labor-market conditions for US
farm-workers by reducing the size of the workforce (Craig 1971; Clemens et al. 2018).6

3.2 Data

The measure of the exposure to the shock in the primary analysis (section 5) is the share of
foreign seasonal labor just before the termination of the Bracero program. The outcome variable is
the innovation activity by year and crop, measured by the number of agricultural patents for each
year and crop, possibly scaled by forward citations. In section 6, I utilize additional information on
labor requirements by crop and technological type to examine the differential effects across different
types of technology. Finally, in section 7, I use data on farm values from the census of agriculture
to examine the impact of the program on the farmers. Below, I describe the exposure and outcome
measures used in the primary analysis. Appendix C provides additional details on these data, as
well as the other data sources that I use in the paper.

Exposure to the Bracero Program: Share of Foreign Seasonal Labor

Exact data on Bracero workers by the crop is unavailable. However, during the period 1948-
1964, 94.5% of the foreign workers admitted for temporary employment in US agriculture were

6 See the timeline of the main events in Table A1.
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Mexican (Bureau of Employment Security 1966, Tables 1 and 3). Hence, in this paper, I use the
share of foreign seasonal workers in the total seasonal employment for each crop in 1964 as a proxy
for the share of Bracero workers (Bureau of Employment Security 1966, Table 5).7 For most of the
statistical analysis of this paper, I use the total number of person-hours worked annually by foreign
and local seasonal workers.8 The sample for the primary analysis consists of 16 crops that used
4,000 or more person-months of foreign labor in 1964. This measure has a significant variation in
the data, ranging from 55% in lettuce to 2% in tobacco (Table 1). For a robustness check, I also
use a binary version of the exposure measure, where crops above the median of foreign share are
defined as exposed crops (Table A5).

[Table 1 about here]

Innovation Measure: Allocating Patents to Crops

My first measure of technology innovation is the number of USPTO patents by crop and year.
To account for the quality of the innovation, I also use the number of patents weighted by the
number of their forward citations. Because most of the Braceros were allocated to harvesting tasks,
I focus on technological innovations related to harvesting and mowing (CPC class A01D) in the
primary analysis in section 5. In section 6, I compared patenting in this class with patenting in
other technological classes using information on the labor requirements by task and crop (see Table
5).

I allocated patents to crops by searching the text of patents for the crop names. I collected the
full text of the patent from Google Patents and looked for the crop names in the title, abstract,
claims, and description sections of the patent document. If more than one crop appears in the text
of one patent, I allocate the patent to the crop which appears first.9 I determined the invention’s
date by the application date of the patent.10

Between 1948 and 1985, US inventors were awarded 2,563 patents related to harvesting and
mowing, which mentioned at least one of the 16 crops (Table 1). I also collected data from the
Google Patents website on the number of citations for each patent.

A basic prediction of the endogenous growth literature is that innovation activity is increasing
with scale; the larger is the value of a market, the higher are the incentives to invent new technologies

7 This measure is highly correlated with another potential measure of the share of Bracero workers, which
is the 1964 to 1965 change in the share of foreign workers (the Pearson correlation coefficient is 0.72).

8 For robustness, I also use the share of foreign workers in the total seasonal employment at the date of peak
foreign employment from (Bureau of Employment Security 1966, Table 21).

9 I estimate robustness checks using other procedures, such as assigning the patents to all the crops or
splitting its weight between the crops (see Table A6).

10 The application date is missing for 34 patents in the sample, for which I estimated the application date
by subtracting the median lag between the application date and issue date in the sample (2.6 years) from
the issue date.
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relevant to that market (Romer 1990; Aghion and Howitt 1992). I use this prediction to validate the
text search algorithm that assigns inventions (measured by patents) to the different markets (here,
crops). Indeed, the data show a strong positive correlation between the average number of patents
by crop and the average value of production by a crop for the period 1948-1985 (Figure 1).11

[Figure 1 about here]

4 Agricultural Innovation and Patenting in the US

Before turning to the primary analysis, this section provides descriptive information on innova-
tion and patenting in the US. I focus on patents in the primary sample, namely patents of harvesting
and mowing technologies related to one of the 16 crops described above, and compare them to the
entire set of USPTO patents in the same year.

I start by examining the identity of the inventors. In particular, I check whether the inventors
are individual inventors that assign the patents to themselves or firms and other institutions that
employ the inventors. Figure A1 shows a monotonic decline in the share of patents that belong to
individual inventors for the patents in our sample over the years, from more than 60% in 1948 to
less than 40% in 1985. A similar decline in the share of patents by individual inventors occurred
to other US patents, from 40% in 1948 to less than 20% in 1985. However, the levels of patents by
individuals are consistently higher for the sample of agricultural innovation than other innovations.
Finally, the data show no differential pattern between patents issued before and after the end of the
Bracero program for both patents inside and outside the sample.

Next, Figure A2 shows the average number of inventors per patent by year. In this case, the
data show a monotonic increase for both patents in the sample and other patents. At the beginning
of the analyzed period, the average number of inventors per patent was around 1.2 for both groups.
At the end of the period, the number of inventors per patent is 1.6 for patents in the sample and
2.0 for other patents. Once again, there is no differential pattern between patents issued before or
after 1964 in both groups.

Another interesting question is how patent applications in the sample are expected to be reviewed
by the US Patent Office. In particular, I check the time between the application and publication
of the successful patents. Figure A3 shows that patents in the sample are reviewed faster than
other patents. Over 1948-1985, the average time between application and publication was 2.6 years
for patents in the sample, compared to 3.0 for other patents. Over the years, the pattern of this
variable seems to be similar for patents inside and outside the sample, and without any significant
change in 1964.

11 The value of each crop was collected from various publications of the US Department of Agriculture. See
Appendix C for additional details and see Table A2 for additional descriptive statistics of the crops in the
sample.
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Finally, I check some institutional features of the market for agricultural innovation studied in
this article compared to the overall market for innovation. To do so, I calculated the number of
unique assignees, patents per assignees, as well as other concentration (or market power) measures
separately for each group of patents (sample/other patents) and years (1948-1964/1965-1985). Table
A3 reports the results.

The number of assignees for patents in the sample is 637 and 800 before and after 1964. The
growth rate in the number of assignees for other patents is higher (from 210,531 to 317,974). The
number of patents per assignee in the sample is 1.7 for both periods. This figure is much higher
in the broader set of patents, with 3.7 and 4.4 patents per assignee in 1948-1964 and 1965-1985,
respectively.

To further examine the concentration in the market for invention, I calculate the Herfindahl-
Hirschman Index, which is the sum of squares of the share percentage of patents issued by each
assignee (ranges between 0 and 10,000). This measure shows a decrease in the market concentration
between the two periods for both patents inside and outside the sample. The share of patents owned
by the top 1, 3, 5, 10, 30, and 50 assignees also decreased between the two periods for both groups
of patents. However, the share of patents owned by top 1, 3, 5, 10, 30, and 50 percent of assignees
slightly decreased between the periods for patents in the sample, but increased for patents outside
the sample.

Overall, the information presented in this section suggests no apparent difference in the type of
inventors or the way the US patent office reviewed the patents before and after the termination of the
bracero program. The patterns of market concentration are less clear. Some of the measures suggest
no change (patents assignee) or even a decrease (share of patents by top percent of assignees) in
the concentration between the periods for patents in the sample, compared to an increase in those
measures for other patents. However, other measures (Herfindahl-Hirschman Index and share of
patents by top number of assignees) suggest a decrease in market concentration for both groups.

5 Effects of Labor Scarcity on Invention in the United

States

My empirical strategy compares changes in invention across crops that were differentially affected
by the termination of the Bracero program. Figure 2 illustrates the main results. The relative
number of patents for crops with low exposure to the Bracero program reveals almost no change
before and after 1965.12 However, for crops in the medium and high exposure groups, there is a
noticeable jump around the end of the Bracero program. The rest of this section explores this
finding more rigorously.

12 To account for the scale differences between crops, I calculated the annual number of patents by crop and
year relative to the pre-period (1948-1964) average of that crop. See Figure A4 for a similar graph by crop.
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[Figure 2 about here]

The dependent variables, citation-weighted or unweighted patent counts by crop and year, are
skewed and nonnegative. For example, 26.6% of the crop/year observations in the data correspond
to years of no patent output; the figure climbs to 76.1% if one focuses on crop/year observations
with no more than five patents.

To address this count nature of the data, I estimate the model using the Poisson Quasi Maximum-
likelihood Estimator, first suggested by Hausman et al. (1984). This estimator is fully robust to
distributional misspecification, and it also maintains certain efficiency properties even when the
distribution is not Poisson (Wooldridge 1999, 2010).13 I compute QML "robust" standard errors,
which are consistent even if the underlying data-generating process is not Poisson. These standard
errors are robust to arbitrary patterns of serial correlation (Wooldridge 1997; Bertanha and Moser
2016).14

The years of analysis for most of the specifications are 1948-1985.15 I chose 1948 for two main
reasons. First, it is the first year that the Bracero workers were employed directly by the farmers
and not by the US government. Second, choosing a year in the middle of the period avoids an
additional (positive) shock to the labor supply at the program’s beginning.16

5.1 Baseline Specification

My estimating equation relates crop i’s output in year t to characteristics of i:

ln [E(Innovationit|Xit)] = β · ForeignSharei · postt + γi + δt (1)

where Innovationit is a measure of innovation output at crop i at year t, ForeignSharei is
the share of foreign workers in the total number of seasonal workers in crop i one year before the
termination of the Bracero program, postt denotes an indicator variable that switches to one after
1965, the γi’s correspond to crop fixed effects, the δt’s stand for a full set of calendar year indicator
variables, and Xit denotes all the independent variables on the right-hand side of the equation.

Table 2 presents the main results. Column (1) examines the determinants of the 16 crops’ patent
count. I find a significant increase in the yearly number of patents produced after 1965 in crops

13 Except for the conditional mean, the distribution of the outcome variable given the dependent variables
and the coefficients is entirely unrestricted. In particular, there can be overdispersion or underdispersion
in the latent variable model (Wooldridge 1997).

14 Due to the small number of crops (16 in most specifications), I did not cluster the standard errors in
the crop-level regressions. However, results are robust for clustering the standard errors at the crop level
(Table A4).

15 The results are robust to the choice of the start and end years (Table A8).
16 Unfortunately, I cannot estimate the effect of this positive shock due to the lack of data on the share of
Mexican workers by crop in the first years of the Bracero program.
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that were more exposed to the Bracero program. A one percentage point rise in the share of foreign
workers before the policy change increases the innovation activity by 3.3 percent (significant at one
percent). Compared with an average of 4.06 annual patents per crop in 1948-1964, an increase of
one standard deviation in the labor-supply shock increases the number of patents by 70.7%, which
amounts to 2.87 additional annual patents per crop at the average pre-period level.17

[Table 2 about here]

Column (2) provides the results for citation-weighted patents, a measure that takes into account
the quality of the innovation. The effect is somewhat smaller: A one percentage point rise in the
share of foreign workers increases the quality-adjusted innovation measure by 2.3 percent.

A potential challenge to the difference-in-differences estimation is that pre-treatment trends
may drive the difference between the patenting of crops with different degrees of exposure. To
address this concern and to check the persistence of the effect, I explored the dynamics of the effects
uncovered in Table 2 by estimating a specification in which the treatment effect interacts with a set
of indicator variables corresponding to a particular calendar year and then graphing the effects and
the 95% confidence interval around them.18

Following the end of the Bracero program, the treatment effect rises monotonically, peaking
three to four years after Bracero exclusion, and remaining at the same level (see Figure 3). Two
aspects of this result are noteworthy. First, the fact that R&D responded so quickly to the negative
labor-supply shock suggests that part of the new patented technologies were ready, or at least close
to being ready, at that time. Potentially, the expected labor shortage provided only a "nudge"
to the inventors of these technologies to make them operational or even just to issue a patent for
them. However, the data show no evidence of recovery—the effect of Bracero exclusion persisted
for at least 15-20 years. This result suggests that labor scarcity not only, or mainly, induced the
patenting of (almost) existing technologies but mostly induced the invention of new technologies.
Second, the event study coefficients fluctuate around zero and are not significantly different from
zero for periods before 1965, showing no evidence for a pre-treatment trend.

[Figure 3 about here]

5.2 Robustness Checks

Appendix A provides additional evidence testing the robustness of the results. The first set
of robustness checks evaluate the sensitivity of the results for the definition of the treatment. My

17 The percentage change in innovation for an increase of a standard deviation σ in the share of foreign workers
is exp(β · σ)− 1. For β = 3.258 and σ = 0.164, the percentage change is exp(3.258 · 0.164)− 1 = 0.707.

18 The small size of the sample (16 crops) does not allow the estimation of many coefficients simultaneously
with satisfactory precision. Therefore, I estimate biennial coefficients. A similar picture was obtained
when estimating annual coefficients but with larger confidence intervals.
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preferred exposure definition is a continuous variable measuring the exposure to the shock in 1964,
one year before the end of the program. This measure carries more information than a binary
treatment variable, which is more common in difference-in-differences studies. The results, however,
are robust to the use of a dummy variable, where crops above the median of foreign share in 1964
get the value one. I estimate the model separately for the two versions of the outcome variable, the
number of patents and citations-weighted patents. The Poisson estimate of the effect is an increase
of 92.5 log points (significant at 1 percent). This estimate suggests that, after 1964, American
inventors produced 152 percent additional patents in high exposed crops relative to low-exposed
crops. The estimated effect using the quality-adjusted measure of invention is a 60.3 log points (or
83 percent) increase in invention (Table A5, columns 3-4).

The primary measure of exposure in this paper is the share of foreign seasonal workers in the
total number of person-hours annually worked in 1964. However, the results are robust to using the
share of foreign workers in the total seasonal employment at the date of peak foreign employment.
The Poisson estimators using this measure of exposure to the Bracero program are somewhat smaller
but still significant at one percent (Table A5, columns 5-6).

The process of Bracero exclusion began in 1962 when the US government raised the required wage
rate for Bracero workers and was completed at the end of 1964 (Craig 1971). In the specifications
above, I picked the post-year to be 1965. Defining the post-year to be 1962, however, the results
are virtually unchanged (Table A5, columns 7-8).

In the baseline specification, I use the share of foreign seasonal workers in 1964 as a proxy for
workers under the Bracero program. Another (probably tighter) measure of the share of Bracero
workers is the 1964 to 1965 change in the share of foreign workers. Using this measure to define
the exposure to the Bracero program, the estimates of the effects are somewhat smaller, but still
statistically significant at least at five percent (Table A5, columns 9-10).

I also checked the sensitivity of the results to the algorithm assigning patents to crops. I
compared five different alternatives. 1) The baseline algorithm assigns the patent to the first crop
that appears in the text of the patent. The four alternative algorithms are: 2) assigning the patent
to the crop that was mentioned more times than any other crop, 3) assigning a patent to each crop
mentioned in the text, 4) assigning equal weight to each crop mentioned so that the sum of the
weights is one, and 5) assigning weights proportional to the number of times each crop is mentioned.
All algorithms yield similar results, both for the innovation measure based on patent counts and
the innovation measure based on the number of citations (Table A6).

The next set of robustness checks alternate the crops included in the analysis. Restricted by the
data availability, the baseline sample of this paper contains crops that used 4,000 or more person-
months of foreign labor in 1964. This choice implies that these crops tend to be labor-intensive.
Moreover, prominent crops (e.g., wheat, corn) are not part of the original sample. To examine the
validity of the results for a broader range of crops, I extended the sample by the ten field crops
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with the largest acreage in the 1964 agricultural census.19 Unfortunately, I did not find exact data
on the share of foreign workers in crops with less than 4,000 person-months of foreign labor in
1964, including these field crops. However, the foreign share of the category "Hay and Grain" is 1.2
percent. In what follows, I assumed that each of the ten field crops has the common foreign share
of 1.2 percent. Columns 3-4 of Table A7 show the results of the difference-in-difference specification
for the aforementioned extended sample. The effect of labor scarcity on innovation is positive and
significant for both innovation measures. The magnitude of the effect is comparable to the original
sample of 16 crops, although a bit smaller. The effect of a one percentage point rise in the share
of foreign workers is 2.8 percent for a simple patents-count innovation measure and 1.5 percent for
the quality-adjusted measure.

I also extended the sample to include ten additional crops of which information on the share of
foreign workers in 1962 in California is available.20 Columns 5-6 of Table A7 report the results for
a sample containing the 16 original crops and the ten "California crops". The results are virtually
identical to the baseline results, with estimates of a 3.1 and 2.3 percent increase in the number of
patents and citations, respectively. Finally, columns 7-8 of Table A7 show the results for all crops
together. The estimated effects are 2.8 and 1.5 percent (significant at one percent).

The years of analysis in the baseline specification are 1948-1985. To check the sensitivity of
the results for this choice, which is somewhat arbitrary, I estimated the baseline specification for
different periods. Table A8 indicates that the results are not sensitive to that decision.

Although the preferred statistical model for count data is the Poisson model, I checked the
sensitivity of the results for three alternative models. Columns 3-4 of Table A9 report the results of
a Negative Binomial model. The estimators are positive with a similar magnitude (effect of 2.2 and
2.0 percent for patent and citation counts, respectively, significant at 1 percent). Next, I estimated
a zero-inflated Poisson regression. This model assumes that two different processes generated the
outcome variable. The first process is governed by a binary distribution that generates extra zeros.
If the first process yields zero, the outcome is simply zero. However, if the binary process yields one,
the outcome is sampled from a Poisson distribution. I assume that the excess zero counts (the first
process) come from a logit model. Maximum likelihood estimates of this model yield results that
are very similar to the baseline Poisson model (2.9 and 1.8 percent increase, and significant at one
percent, Table A9, columns 5-6). Finally, I estimated an OLS model, where the outcome variable
is the natural log of the count of patents and citations (observations with zero patents/citations
are dropped from the regression). An estimate of the effect using the patents measure shows an
effect of a 1.5 percent increase, smaller from the baseline Poisson estimate (significant at 1 percent).
Using the quality-adjusted inventions measure, I find that the estimated effect is an increase of 2.0
percent, similar to the baseline estimate (significant at one percent, Table A9, columns 7-8).

As I discussed earlier, the data show no evidence for pre-treatment trends. To further address

19 These crops are: barley, corn, flax-seed, oats, peanuts, rice, rye, sorghum, soybeans, and wheat.
20 These crops are apricots, cherries, olives, peaches, pears, plums, prunes, lemons, almonds, and walnuts.
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this concern, I estimated the baseline specification with crop-specific linear pre-trends. The es-
timates are greater (4.9 and 4.5 percent for patents and citations, respectively) and statistically
significant at one percent (Table A10, columns 3-4).

5.3 The Decision about the Bracero Workers and Instrumental

Variables estimation

What explains the variation in the share of Mexican workers between the crops? My identifying
assumption is that controlling for crop and year fixed effects, changes in patenting would have
been comparable for crops with a high and low share of Mexican workers if the US government
had not terminated the Bracero program. This assumption is violated if the percentage of Mexican
workers is correlated with factors that generate unparalleled innovation activity trends for unrelated
reasons. For example, suppose the share of Mexican workers is higher in crops with higher labor
requirements per acre, and there is convergence in the invention dynamics such that crops with
higher labor requirements close the gap by having more labor-saving inventions in later years. In
that case, the estimated effect is not the causal effect of the Bracero exclusion.

Using data on the value of production, seasonal labor, and acreage of the crops, Table A11
reports the correlation between the foreign share of seasonal labor in 1964 and various measures
of labor productivity, yield, and market size. The data suggest no significant correlation between
the foreign share and any of these measures (p-value is always greater than 10 percent). While the
data show no correlation between the exposure measure and any of the observable characteristics
of the crops, the rest of this section uses instrumental variables to address the possibility that other
(unobservable) characteristics might violate the parallel trend assumption.

Two logical instruments are the distance from Mexico and the historical share of the population
of Mexican origin. The data show that, other things equal, seasonal Mexican workers tended to work
in places closer to the US-Mexico border and in places that attracted older waves of immigration.
The exclusion restriction requires that those variables must not affect the technological progress
differentially in the pre and post periods, except for its impact through the channel of the Bracero
program termination. Indeed, it is unlikely that the proximity to Mexico or the historical share of
Mexicans impacts the technological progress differentially before and after 1965 other than its effect
through the Bracero program.21

To construct the instrument, I use county-level information on the distance from Mexico, and the
share of the Mexican population in 1940, taken from the US census of population. As my innovation
measures are at the crop level, I need to transform the instruments from the spatial dimension into
the crop distention. To do so, I use the US agricultural census from 1964 for information on the

21 The exclusion restriction does not require that the cross-sectional variation of the instruments would not
affect the technological progress itself. The instruments remain valid even if the cross-sectional variation is
related to these instruments. For instance, if the crops closer to Mexico tend to have faster technological
progress, this would be picked up by the crop fixed effect, and the exclusion restriction would still hold.
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crops produced in each county. More precisely, the average distance from Mexico of a crop i is
measured by di =

∑
c dcwic where dc is the minimal distance between the Mexican border and the

center of the county c, and wic is the percent of the acreage of crop i in county c in the total acreage
of crop i in 1964. The crop-average Mexican population is calculated similarly.

To implement the IV for count-data, I use a model first introduced by Mullahy (1997). It is
widely used in the empirical literature and has better asymptotic properties than the additive errors
models.22 The model takes the form:

Innovationit = exp [β · ForeignSharei · postt + γi + δt] · εit (2)

where εit is a unit-mean error term. The treatment variable ForeignSharei·postt is instrumented
by zi · postt, where zi is either the average distance from Mexico, or the 1940 average percentage of
Mexicans in the population of the counties growing the crops (or both). The GMM estimators of
the model are presented in Table 3.23 In the first and fourth columns, the instrument used is the
average distance from Mexico. The estimates for a one percentage point rise in the share of foreign
workers are 4.9 and 5.3 percent for the patents and citations measures, respectively (significant at
one percent). In the second and fifth columns, I use the average share of the Mexican population
similarly. The estimates of the effect are a 3.0 percent increase in patents (marginally significant,
p-value = 0.067) and a 4.3 percent increase in citations (significant at five percent). Finally, the
third and sixth columns report the estimates where both instruments are used. The estimates are
4.5 and 5.0 percent, respectively, both significant at 1 percent. Overall, the IV estimates of the
effect are somewhat higher than the baseline estimates. This indicates that, if anything, the simple
Poisson estimates of the effect are biased toward zero.

[Table 3 about here]

5.4 Building Predicted Exposure using a Technology-Based Sim-

ilarity Matrix

An additional threat for the identification strategy comes from a potential technical similarity
between groups of crops. If exposure to the Bracero program is not randomly distributed across the
groups, differential technical progress between the groups might confound the results.

22 See Cameron and Trivedi (2013) for a review on count-data instrumental variables estimation. Similar
results were obtained using additive-errors and control-function models.

23 See Table A12 for the corresponding "first-stage" estimates. The Poisson-GMM estimation method does
not rely on an actual first stage but on the moment conditions implied by the exclusion restriction. Anyway,
I report the OLS coefficients of a linear first stage. Those are the exact coefficients obtained in the first
stage when using the control function method to estimate the IV-Poisson (instead of GMM), which provides
very similar results.

15



To address this concern, I checked the correlation between the exposure to the Bracero program
and the technical features of the crops. To do so, I build a "technically-predicted exposure" measure
which is the leave-one-out predicted exposure according to the exposure of crops that are similar to
the original crop regarding technical properties. The technically-predicted exposure enables me to
check whether the technical features of a crop predict its actual exposure to the program.

I measured the technical similarity between crops by the number of patents that mention both
crops. If many technological innovations are relevant for two crops simultaneously, those crops have
a lot in common regarding technical properties. Specifically, I build a similarity matrix where the
off-diagonal entry (i, i′) is the number of patents in the sample that mention crops i and i′ somewhere
in the text, and the diagonal entries are set to zero. Then, each row in the matrix is normalized to
sum to one. Table A13 shows the similarity matrix. The results indicate, for example, that citrus is
most similar to apples and that asparagus is a combination of celery, lettuce, and tomatoes. Using
this similarity matrix, I constructed the technically-predicted exposure as follows:

ForeignShareTPi =
∑
i′ 6=i

wi,i′ForeignSharei′ (3)

where ForeignSharei′ is the foreign seasonal workers shares of crop i′. The data show no
correlation between the actual foreign shares and the technically-predicted ones (Figure 4). This
indicates that the crop’s exposure to foreign labor is orthogonal to the technological features of the
crops measured by the patent-based similarity measure described above.

[Figure 4 about here]

Furthermore, I re-estimated the Poisson regressions controlling for the technically-predicted
exposure. By doing so, I isolated the part in the exposure to the labor-supply shock that is not
predicted by the technical features of the crops. The difference-in-differences specification takes the
form:

ln [E(Innovationit|Xit)] = β · ForeignSharei · postt (4)

+ α · ForeignShareTPi · postt + γi + δt

The results for the two invention measures are reported in Table 4. The estimated effect is 3.6
and 2.5 percent for the patents and citations measures, respectively (significant at 1 percent). These
estimates are close to the baseline results.

[Table 4 about here]

Overall, the results in this section provide additional support to the claim that the allocation
of Mexican workers between crops was not systematically correlated with features of the crops that
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affect future technological innovation. Therefore, the labor-supply shocks can be treated as if they
are randomly assigned to the crops.

6 Effects by Type of Technology

The main prediction of the theoretical model presented above is that a negative shock of the
labor supply should increase labor-saving technological progress more than labor-augmenting tech-
nologies. An ideal way to check this prediction is to identify labor-savings and labor-augmenting
technologies from the text of the patent. However, in practice, this task is not easy to perform,
the more so through an automatic algorithm. For example, a patent for "Grape Harvester" was
granted in 1973 (US patent number 3,766,724). This innovation improves the performance of a
mechanical grape harvester that replaces manual laborers; therefore, it should be classified as a
labor-saving technology. In the text of the patent, however, none of the words "labor", "work",
"job", "employment", "task", "save", or "replace" appear.

To bypass this problem, I use information on the labor intensity of different tasks as a proxy
for the probability of a technological innovation related to these tasks to be labor saving. The
underlying assumption is, ceteris paribus, the incentive to develop new labor-saving technology for
a particular task is higher the higher that task’s labor intensity is. To conduct this, I used the
technological classification of the patents together with data on labor requirements per task and
crop.

In particular, I collected data on labor requirements from the State of California’s "Report and
Recommendations of the Agricultural Labor Commission" (State of California 1963). This data
includes information on California’s 25 most valuable crops in 1960. For each of these crops, the
report lists in detail all the tasks needed to produce the crop, together with estimates on person-
hours and labor cost required to produce an acre of that crop. Among the 25 crops included in this
data set, 18 have information on the exposure to the Bracero program (either at the country level
in 1964 or for the state of California in 1962).

To get a link between agricultural tasks and technology, I manually classified each task into one
of the six agricultural patent subclasses.24 To do so, I chose the technology subclass most similar
to the task’s description using the subclass’s detailed definitions.25 For example, the production of
tomatoes in 1960 required 12.5 person–hours of "thinning" per acre, at the cost of 13.12 dollars.
I classified this task into CPC subclass A01B ("Soil Working In Agriculture"), which contains the
group "thinning machines" (A01B 41).26

For each class-crop pair, I calculated the share of labor requirements for this technological class

24 See the definition of these subclasses in Table A14.
25 The definitions of the CPC classification can be found at https://www.uspto.gov/web/patents/
classification/cpc/html/cpc.html.

26 Table A15 reports the classification of all tasks.
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over the total labor requirements of that crop. I used two versions of these labor-intensity measures,
one using person-hours and the second using monetary cost. The second measure takes into account
potential differences in skills or efficiency units of the labor inputs. Among the six subclasses,
only three have a significant percentage of labor: Soil Working (A01B), Harvesting (A01D), and
Cultivating (A01G). The average share of person-hours labor inputs for these crops is 15 percent,
50 percent, and 26 percent, respectively (Table A14).27 As a robustness check, I also estimated a
specification where the labor-intensity measure equals one for Harvesting, which is the most labor-
intensive category on average, and zero for the other two categories. This specification does not
require information on the actual labor intensity of each class-crop, thus allowing estimation with
all crops which I have data on their exposure to the Bracero program.

Using those measures, I estimated the following continuous triple-difference specification:

ln [E(Innovationijt|Xijt)] = β · ForeignSharei · Intensityij · postt + γij + δit + εjt (5)

where Innovationijt is the number of US patents/citations in crop i, technological class j, and
year t. ForeignSharei is the foreign percentage of seasonal workers in crop i in 1964. Intensityij
is a measure of labor inputs required to perform task j in crop i. postt indicates years after 1964.
γij , δit, and εjt are crop-task, crop-year, and task-year fixed effects, respectively.

The Poisson quasi-maximum likelihood estimates of equation 5 imply a substantial higher effect
of Bracero exclusion after 1964 in the more labor-intensive tasks relative to the less labor-intensive
tasks. This result is true for the three different labor-intensity measures. The first measure is
the percentage of person-hours required for tasks in class j over the total person-hours required
for producing crop i. Using that measure, the effect of a one percentage point rise in the share
of foreign workers on patents after 1965 is higher by 3.2 percent in technological classes required
100 percent of the labor compared with technological classes required no labor. (Table 5, column
1, significant at one percent). The effect is slightly smaller, 2.2 percent, when using the citations
measure of innovation (Table 5, column 2, significant at five percent).

[Table 5 about here]

In the theoretical model described above, I assumed workers are homogeneous, and therefore
there is only one wage level. In reality, however, some tasks can only be performed by higher-skilled
workers and cost more per hour of work. The second measure of labor intensity takes this into
account by weighting the hours required to perform a task with the wage rate paid for that task.
The measure is the share of labor cost for a class of tasks in the total labor cost of a crop. Using this
labor-intensity measure, I find the results are virtually the same as the results of the first measure.
The estimates for β are now 3.1 and 2.1 percent, respectively (5, columns 3-4).

27 Results are robust for including all six technology subclasses in the analysis.

18



The first two labor-intensity measures require exact information about the labor requirements
of each task and crop. This data is available only for 18 out of 26 crops with information on the
exposure to the Bracero program. The third measure of labor intensity equals one for harvesting
tasks, the most labor-intensive class on average, and zero for the other two classes. Using this
measure I can estimate equation 5 with all 26 crops.28 The triple-difference estimates are now
slightly smaller, 2.5 and 1.8 percent, respectively (Table 5, columns 5-6).

To further investigate the triple-difference results, I estimate difference-in-differences specifica-
tions for each technology subclass separately. The results in Figure 5 show that the point estimates
are monotonically increasing with the labor intensity of the task. In the Soil Working subclass,
which is the least labor-intensive subclass (accounts for 14 percent of the labor requirements per
crop on average), a one percentage point rise in the share of foreign workers decreases the number
of patents by 0.53 percent (the 95 percent confidence interval is [-1.96,0.90]). The estimated effect
in the Cultivating subclass (26 percent of the labor requirements) is an increase of 0.87 percent, and
the confidence interval is [-0.05,1.79]. Finally, the estimate for the Harvesting subclass (50 percent
of the labor requirements) is 3.14, and the confidence interval is [2.26,4.01].

[Figure 5 about here]

Overall, the results presented in this section indicate that the effect of labor scarcity on tech-
nological progress is greater in more labor-intensive tasks. Under the assumption that labor-saving
technologies are more likely to be developed for labor-intensive tasks, the results suggest that la-
bor scarcity encourages the invention of labor-saving technologies more than other technologies, in
accordance with the theory.

Without making this assumption, a more modest interpretation of the results of this section
can be offered. One can think of the additional information about the task’s labor intensity as a
measure of the shock intensity. The extra dimension allows adding of fixed effects for year-crop,
year-class, and crop-class pairs. These fixed effects address many potential threats to the baseline
difference-in-differences specification, such as time-varying crop-specific demand shocks that, for
some reason, are correlated with the Bracero shock. Thus, the results offer an additional robustness
check for the effect of labor supply on technical innovation.

7 The Impact on Farm Owners

How the Bracero exclusion impacted the farm owners that employed the Bracero workers? In
principle, the profits of farm owners should decline after the Bracero exclusion due to their loss
of low-cost labor. Under standard assumptions (e.g., without externalities), this is true even if we

28 These crops include the 16 crops in the main data set and additional ten crops with information on the
exposure in the state of California. The results are similar when restricting the sample to the 16 original
crops (estimates of 2.7 and 1.7 percent, respectively, significant at five percent).
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consider the positive technological reaction, as revealed by the fact that farmers chose to hire the
Bracero workers when possible and fought against the program’s cancellation. However, if there
are sufficiently large externalities such as knowledge spillovers, the policy change may cause a "big
push" dynamic that makes farmers better off in the medium and long run by "being forced" to
adopt the newly available labor-saving technology (Hornbeck and Naidu 2014).

To check whether farmers won or lost from the policy change, I used the land value to measure
the profits of the farm owners. The value of a farm would increase if, following the end of the
program, it became more profitable to be a farmer in farms that were more exposed to the program.

In particular, I use the US census of agriculture for the years 1950-1982 to build a panel data
of land-value per acre by county and year. Additionally, using the same data sets and the exposure
measures by crop, I construct a measure of the exposure of a county c to the Bracero program in
the following way:

Exposurec =
∑
i

ForeignSharei ·AcreageShareic (6)

where ForeignSharei is the foreign percentage of seasonal workers in crop i and AcreageShareic
is the share of crop i in the total acreage of county c in the 1964 census. The regression equation is:

ln(V aluect) =

1982∑
τ=1950

βτ · I(t = τ) · Exposurec + γc + δt + εct (7)

where γc and δt are county and year fixed effects, respectively. I ran separate regressions for
Bracero and non-Bracero states.29 Figure 6 shows a permanent decrease in farm values of counties
that are relatively more exposed to the shock. These results are valid only for states that participated
in the Bracero program.

[Figure 6 about here]

The results of this section show that despite the positive technology reaction, farmers who
employed Bracero workers were adversely affected by the termination of the program, even in the
medium and long run. In other words, innovation was not enough to offset the lower labor supply for
the affected farms.30 This fact comports with historical documentation about farmers’ opposition
to the program’s termination.

29 Following Clemens et al. (2018), I defined Bracero states as having some Braceros in 1955 and non-Bracero
states as having zero Braceros in 1955.

30 Hornbeck and Naidu (2014) also find a negative impact on farmland values per acre after a negative shock
to the supply of low-skilled workers. Similar results (although not always statistically significant) also
obtained by Lafortune et al. (2015) and Abramitzky et al. (2019).
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Moreover, in a recent study, Clemens et al. (2018) show that although the termination of the
program aimed to increase the wages and employment rate of local US workers, both employment
and wages were not affected. Taken together, one can conclude that Bracero exclusion made capital
worse off while making labor no better off.31

Finally, the fact that the negative impact starts only after the termination of the Bracero
program suggests that the policy change was also unexpected, justifying the identification strategy
of this paper.

8 Conclusion

This study provides evidence that the supply reduction of seasonal Mexican workers in the
United States after the termination of the Bracero program caused the invention of new harvesting
machines. I demonstrated that US inventors focused their efforts on developing new technologies
that supported the production of crops that were affected by the labor-supply shock. Moreover, I
showed that more inventions related to production tasks that required intensive labor input were
invented, probably because those technologies tended to be more labor-saving. Finally, I show that
the immigration restrictions were harmful to farm businesses, despite the positive technological
response.

The termination of the Bracero agreement caused a massive negative shock to agricultural labor
supply with high variation between the different crops. This shock provides a rare opportunity to
study the effect of labor supply on the creation of new technologies. The fact that this study focused
on innovations in the United States, technological leaders of the time, and the use of between crop
variation helped capture this type of technological progress.

I developed a new method to classify patents into crops, using the entire text of the patent.
While the vast majority of studies use only the count of patents and citations of the patents to
measure technology, the patent text provides a new rich world of information that needs to be
explored. The current study takes a small step in this direction, but there is much more to be
done. One concrete example is the identification of labor-saving innovations. This study attempts
to indirectly measure it using the information on the labor-intensiveness of different tasks. However,
a direct measure based on the terminology used in the patent could be more effective.

This study focused only on one industry, agriculture. Despite the importance of this industry in
economic development and economic history, the direction and magnitude of the effect in different
industries would also be of much interest. Moreover, there are reasons to believe that technological
progress in agriculture tends to be more labor-saving than in other sectors (Acemoglu 2002, 2010).

31 It is behind the scope of this paper to study the impact of the Bracero exclusion on aggregate welfare.
The increased innovation could have had off-farm benefits such as higher productivity, lower output prices,
or spillovers to other innovations that offset (or even reverse) the harm to the landowning farmers. Never-
theless, the results suggest that the Bracero exclusion caused a Pareto loss to both domestic workers and
farmers collectively.
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Thus, the finding that labor scarcity encourages innovation in this industry is consistent with the
theory. Future research on the heterogeneity of the effect by industry and the factors that can
explain this heterogeneity is needed.
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Table 1: Number of Harvesting and Mowing Patents between 1948-1985, the Number of Patents
Before and After 1965, and the Share of Seasonal Foreign Workers in 1964 by Crop

Number of Patents Before After Ratio Foreign Share
Crop 1948-1985 1948-1964 1965-1985 After/Before of Seasonal Work

Apples 74 27 47 1.7 3.8
Asparagus 51 12 39 3.3 19
Beans 277 127 150 1.2 2.4
Celery 20 8 12 1.5 32.4
Citrus 201 42 159 3.8 21.6
Cotton 772 494 278 .6 3.7
Cucumbers 39 11 28 2.5 27.4
Grapes 137 13 124 9.5 3.3
Lettuce 25 9 16 1.8 55.3
Melons 18 6 12 2 28.4
Potatoes 213 139 74 .5 3.6
Strawberries 37 12 25 2.1 13.8
Sugarbeets 117 63 54 .9 19.9
Sugarcane 155 38 117 3.1 46.9
Tobacco 206 76 130 1.7 1.9
Tomatoes 121 26 95 3.7 26.2

Sum/Median 2463 1103 1360 1.9 19.4

Notes: This table summarizes the outcome measure (number of patents) and the treatment variable (foreign
share of seasonal workers) for each crop in the main sample. The last row presents the sum for the second, third,
and fourth columns and the median for the last two columns.
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Table 2: Effects of Bracero Exclusion on Invention: Baseline Estimates

(1) (2)
Patents Citations

Foreign share × post 3.258*** 2.271***
(0.474) (0.497)

Effect of SD increase in exposure 2.87 10.79
Mean patents/citations before 1965 4.06 23.90
Treatment mean 0.19 0.19
Treatment sd 0.16 0.16
Year FE Yes Yes
Crop FE Yes Yes
N (crops × years) 608 608

Notes: Difference-in-differences regressions with continuous treatment compare changes in patenting per year
in more exposed crops with changes in less exposed crops: ln [E(Innovationit|Xit)] = β · ForeignSharei ·
postt + γi + δt where Innovationit is the number of US patents/citations in crop i and year t, ForeignSharei
is the foreign percentage of seasonal workers in crop i in 1964, postt indicates years after 1964, and γi and δt are
crop and year fixed effects, respectively. The table reports the Poisson quasi-maximum likelihood estimators
of the percentage change in innovations resulting from an increase of one percentage point in the exposure to
foreign labor. The average response is the estimated change in the number of patents/citations per year for
a one standard deviation increase in the exposure at the average number of patents/citations per crop and
year before 1965. All specifications include crop and year fixed effects. Robust standard errors are shown in
parentheses.
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Table 3: Effects of Bracero Exclusion on Invention: Instrumental Variables

Patents Citations

(1) (2) (3) (4) (5) (6)

Foreign share × post 4.849*** 2.968* 4.466*** 5.272*** 4.272** 4.968***
(1.565) (1.622) (1.499) (1.587) (1.742) (1.538)

Instruments Distance Population Both Distance Population Both
Year FE Yes Yes Yes Yes Yes Yes
Crop FE Yes Yes Yes Yes Yes Yes
N (crops × years) 608 608 608 608 608 608

Notes: Difference-in-differences regressions with instrumental variables: Innovationit = exp[β ·
ForeignSharei · postt + γi + δt] · εit where εit is a unit-mean error term. The treatment variable
ForeignSharei ·postt is instrumented by zi ·postt, where zi is either the average distance from Mexico,
or the average percentage of the Mexican population in 1940 of the counties growing the crops (or
both). The dependent variable is the number of patents in columns 1-3 and the number of forward
citations in columns 4-6. Estimators presented are based on Mullahy (1997) count-data IV model
with multiplicative errors. The results reported in columns 1 and 4 use the average distance from
Mexico as an instrument variable. Columns 2 and 5 show the results using the Mexican population
IV, and in column 3 and 6 both instruments are used. The average distance from Mexico of a crop i
is measured by di =

∑
c dcwic where dc is the minimal distance between the Mexican border and the

centroid of county c, and wic is the percent of acreage of crop i in county c out of the total acreage of
crop i. The average Mexican population of a crop is calculated in a similar way using data from the
1940 US population census. All specifications include crop and year fixed effects. Robust standard
errors are shown in parentheses.
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Table 4: Effects of Bracero Exclusion on Invention: Continuous Difference in Differences Controlling
for Technically-Predicted Exposure

(1) (2)
Patents Citations

Foreign share × post 3.588*** 2.474***
(0.517) (0.557)

Technically-predicted foreign share × post 2.392** 1.377
(0.981) (1.188)

Mean patents/citations before 1965 4.06 23.90
Year FE Yes Yes
Crop FE Yes Yes
N (crops × years) 608 608

Notes: Poisson quasi-maximum likelihood estimators of Difference-in-differences model with two continuous treatments:
ln [E(Innovationit|Xit)] = β ·ForeignSharei · postt +α ·ForeignShareTPi · postt + γi + δt. ForeignSharei is the foreign
percentage of seasonal workers in crop i in 1964. ForeignShareTPi is the "technically-predicted" foreign share of a crop i,
which is the weighted average of foreign shares of all other crops, where the weights are a measure of the similarity between
the crops, measured by the number of patents in the sample that mentions both crops. The weights are normalized to
sum to one. All specifications include crop and year fixed effects. Robust standard errors are shown in parentheses.
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Table 5: Effects of Bracero Exclusion on Invention in Labor Intensive Tasks: Triple-difference Estimates

(1) (2) (3) (4) (5) (6)
Patents Citations Patents Citations Patents Citations

Foreign percentage × labor-class × post 3.224*** 2.271**
(0.964) (1.052)

Foreign percentage × cost-class × post 3.133*** 2.161**
(0.953) (1.024)

Foreign percentage × class × post 2.459*** 1.775***
(0.550) (0.628)

Mean patents/citations before 1965 2.19 14.14 2.19 14.14 1.89 12.72
Crop-Class FE Yes Yes Yes Yes Yes Yes
Crop-Year FE Yes Yes Yes Yes Yes Yes
Class-Year FE Yes Yes Yes Yes Yes Yes
N (crops × classes × years) 1,447 1,447 1,447 1,447 2,096 2,096

Notes: Triple-difference regressions with continuous treatment comparing the effect of Bracero exclusion on patenting in labor-
intensive tasks with the effect in less labor-intensive tasks: ln [E(Innovationijt|Xijt)] = β ·ForeignSharei ·Intensityij ·postt+
γij+δit+εjt. Innovationijt is the number of US patents/citations in crop i, technological class j, and year t. ForeignSharei is
the foreign percentage of seasonal workers in crop i in 1964. Intensityij is a measure of labor inputs required to to perform task
j in crop i. postt indicates years after 1964. γij , δit, and εjtare crop-task, crop-year, and task-year fixed effects, respectively.
The table reports the Poisson quasi-maximum likelihood estimators of β. In the four first columns, I use information on
the labor requirement by crop and task to measure the relative labor intensity of a crop-class pair. In columns (1) and (2),
Intensityij is the percentage of hours of labor required for tasks in class j for producing crop i, while in columns (3) and (4)
it is the relative labor cost. In columns (5) and (6), Intensityij equals one for harvesting and mowing tasks (the most labor
intensive class on average) and zero for other classes. Robust standard errors are shown in parentheses.
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Figure 1: Correlation between Invention and Market Values

Notes: This figure shows the correlation between the innovation activity related to a crop and the crop’s
market value. Innovation is measured by the log of the average number of US patents related to harvesting
technologies in 1948-1985. The text-search algorithm for allocating patents to crops is described in the text.
Log average value of production in the years 1948-1985 in 1980 dollars. Data in market values exist for all
crops in the sample except apples. The coefficients (and robust standard errors) of the fitted line are -9.89
(1.92) and 0.81 (0.14) for the intercept and slope, respectively. The Pearson correlation coefficient is 0.80
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Figure 2: Invention over Time for Crops with Low, Medium and High Exposure to the
Bracero Program

Notes: Low exposure: six crops with at most 3.8 percent of foreign workers. Medium exposure: five crops
with between 3.8-26.2 percent foreigners. High exposure: five crops with at least 26.2 percent foreigners.
The normalized patents measure is the average normalized number of patents for the crops in the exposure
group. Each crop-year observation is divided by the crop’s pre-period (1948-1964) average number of patents
per year.
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Figure 3: Effects of Bracero Exclusion on Invention: Event Study

Notes: Event study regression with continuous treatment comparing patenting per year in more exposed
crops with patenting in less exposed crops: ln [E(Innovationit|Xit)] = βt · ForeignShareii + γi + δt where
Innovationit is the number of US patents in crop i and year t, ForeignSharei is the foreign percentage
of seasonal workers in crop i in 1964 (in percentage points), βt is the bi-annual indicator variable and γi
and δt are crop and year fixed effects, respectively. The graph plots the Poisson quasi-maximum likelihood
estimators of βt and the 95 percent confidence interval (using robust standard errors) of these coefficients.
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Figure 4: Correlation between Actual and Technically-Predicted Share of Foreign Seasonal
Workers in 1964

Notes: This figure show the correlation between the share of foreign seasonal workers in 1964 and the
technically-predicted share by crop. The technically-predicted foreign share of a crop i is the weighted
average of foreign shares of all other crops, where the weights are a measure of the similarity between
the crops, measured by the number of patents in the sample that mentions both crops. The weights are
normalized to sum to one. The coefficients (and robust standard errors) of the fitted line are 0.17 (0.13) and
0.10 (0.47) for the intercept and slope, respectively. The Pearson correlation coefficient is 0.06
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Figure 5: Difference-in-Differences coefficients by Technological Class

Notes: This graph shows the difference-in-differences estimates of the effect of exposure to the Bracero
program on innovation (equation 1) for three agricultural CPC patent subclasses separately. The y-axis
shows the Poisson quasi-maximum likelihood estimates and their 95 percent confidence interval (using robust
standard errors). The x-axis shows the share of labor requirements for the corresponding technological
subclass over the total labor requirements of a crop, averaged across the crops.
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Figure 6: Effects of Bracero Exclusion on Farm Values

Notes: Event study regression with continuous treatment comparing farm values per agricultural-census
year in more exposed counties with farm values in less exposed counties: ln(V aluect) =

∑1987
τ=1950 βτ · I(t =

τ) ·Exposurec + γc + δt + εct. V aluect is the value of an acre of agricultural land in county c in census year
t. Exposurec is a measure of the exposure of county c to the Bracero program, calculated by Exposurec =∑
i ForeignSharei · AcreageShareic where ForeignSharei is the foreign percentage of seasonal workers in

crop i and AcreageShareic is the share of crop i in the total acreage of county c in the 1964 census. The
exposure is normalized to have a mean of zero and a unit standard deviation. βt is a census specific indicator
variable and γc and δt are county and year fixed effects, respectively. The graph plots the OLS estimators
of βt and the 95 percent confidence interval of these coefficients. Standard errors are clustered at the county
level.
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Appendices (for online publication)

A Appendix Tables and Figures

Table A1: Timeline of Events

Date Event

August 1942 Wartime program started

January 1948 Postwar era: Braceros contracted directly with US employers

August 1951 Congress approved Public Law 78, which served as the statutory basis for the program until its end

March 1962 US government required farmers to offer Braceros at least the statewide average wage

December 1964 Termination of the program

Notes: The table is based on Craig (1971).
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Table A2: Summary Statistics for Crops in the Sample, United States, 1948-1985.

Crop total labor domestic labor foreign labor foreign share acreage production value

Lettuce 122,500 54,600 67,800 0.553 220,351 44,483 498,007
Sugarcane 105,700 56,100 49,600 0.469 588,511 491,619 698,747
Celery 44,400 30,000 14,400 0.324 34,434 15,389 172,452
Melons 64,700 46,300 18,400 0.284 426,346 41,421 313,727
Cucumbers 105,500 76,600 28,900 0.274 178,723 14,914 158,070
Tomatoes 345,100 254,600 90,500 0.262 474,035 131,244 887,708
Citrus 319,800 250,800 69,100 0.216 . 225,213 1,456,449
Sugarbeets 160,600 128,700 31,900 0.199 1,093,495 442,956 703,143
Asparagus 60,500 49,000 11,500 0.190 122,811 2,936 118,202
Strawberries 308,500 266,100 42,500 0.138 72,702 5,551 265,991
Apples 132,000 127,000 5,000 0.038 . . .
Cotton 1,769,400 1,704,200 65,200 0.037 14,420,034 61,122 4,898,662
Potatoes 246,600 237,700 9,000 0.036 1,422,176 292,770 1,613,069
Grapes 179,600 173,700 5,900 0.033 592,258 82,798 701,520
Beans 263,100 256,700 6,400 0.024 1,481,324 18,670 415,374
Tobacco 767,200 752,300 14,900 0.019 1,124,646 19,458 3,137,989

Notes: Seasonal hired labor, by crop and origin of worker, United States, 1964 and average acreage, production and value by crop,
United States, 1948-1985. Data from Farm Labor Developments and USDA annual statistical bulletins (see Appendix C for details).
Seasonal labor in person-months, acreage in acres, production in 1000 Cwt (100,000 pounds), and value of production in 1980 dollars.
Crops listed in descending order of foreign seasonal hired labor relative to the total.



Table A3: Measures of Market Concentration

Sample Other patents
1948-1964 1965-1985 1948-1964 1965-1985

N. assignees 637 800 210531 317974
Av. patents per assignee 1.7 1.7 3.7 4.4
Herfindahl-Hirschman Index 125.1 96.3 21 11.3
Share patents by top 1 assignee 7.3 6.3 2.9 1.3
Share patents by top 3 assignees 16 14 5.8 2.7
Share patents by top 5 assignees 21.1 18.5 7.6 3.9
Share patents by top 10 assignees 26.4 23.5 10.8 6.8
Share patents by top 30 assignees 35.7 31.9 17.3 14.3
Share patents by top 50 assignees 40.6 36.6 21 19.1
Share patents by top 1 percent 22.4 21.9 51.5 59
Share patents by top 3 percent 32.1 30.1 59.8 66.4
Share patents by top 5 percent 36 34.4 63.9 69.9
Share patents by top 10 percent 43 41.5 70 75
Share patents by top 30 percent 59.6 58.8 81.3 84.2
Share patents by top 50 percent 71.1 70.6 86.6 88.7

Notes: This table reports various measures of the concentration of patents issued by assignees.
The Herfindahl-Hirschman Index is the sum of squares of the share percentage of patents issued by
each assignee (ranges between 0 and 10,000). The sample consists of USPTO patents in the CPC
"harvesting and mowing" subclass that mention one of the 16 crops (see text for details). Other
patents include all other USPTO patents. All measures are calculated separately for each group of
patents (sample/other patents) and years (1948-1964/1965-1985).
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Table A4: Effects of Bracero Exclusion on Invention: Alternative Standard Errors

Analytical clustered SEs Bootstrap clustered SEs

(1) (2) (3) (4)
Patents Citations Patents Citations

Foreign share × post 3.258*** 2.271*** 3.258** 2.271**
(1.257) (0.825) (1.487) (0.975)

N (crops × years) 608 608 608 608

Notes: This table shows standard errors clustered at the crop level (16 clusters) for the estimates of the baseline specifications reported in Table
2. The first two columns show the analytical clustered standard errors. The last two columns show bootstrap clustered standard errors based on
1,000 repetitions. In each repetition, 16 clusters are drawn (with replacement) from the sample of 16 clusters.
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Table A5: Effects of Bracero Exclusion on Agricultural Invention: Alternative Definitions of the Treatment

Baseline Binary Peak season Post=1962 Change 64-65

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Patents Citations Patents Citations Patents Citations Patents Citations Patents Citations

Foreign share × post65 3.258*** 2.271***
(0.474) (0.497)

Binary exposure × post65 0.925*** 0.603***
(0.146) (0.163)

Peak season × post65 2.718*** 1.848***
(0.402) (0.426)

Foreign share × post62 3.324*** 2.539***
(0.509) (0.540)

Foreign share change 64-65 × post65 2.858*** 1.620**
(0.758) (0.759)

Mean patents/citations before 1965 4.06 23.90 4.06 23.90 4.06 23.90 4.06 23.90 4.06 23.90
Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Crop FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
N (crops × years) 608 608 608 608 608 608 608 608 608 608

Notes: This table checks the sensitivity of the results to the definition of the treatment. The first two columns repeat the baseline specification, where the continuous treatment
is the share of foreign workers in the total seasonal employment and the "post" year is 1965, the first year after the abrogation of the bracero program. The following two columns
use a binary treatment: crop is in the treatment group if the foreign percentage is above the median. In columns (5) and (6), the treatment is defined according to the foreign
share at the date of peak foreign employment of each crop. Columns (7) and (8) use the baseline (continuous) measure of the crop’ exposure to the Bracero exclusion, but change
the "post" year to be 1962, when the US administration started to restrict the program. The last two columns use the 1964 to 1965 change in the share of foreign workers to
define the treatment. All specifications include crop and year fixed effects. Robust standard errors are shown in parentheses.



Table A6: Effects of Bracero Exclusion on Agricultural Invention, Robustness to the Text-search Algorithm

First crop Maximal crop All crops Equal weights Proportional weights

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Patents Citations Patents Citations Patents Citations Patents Citations Patents Citations

Foreign share × post 3.258*** 2.271*** 3.223*** 2.163*** 3.028*** 2.220*** 3.046*** 2.128*** 3.182*** 2.178***
(0.474) (0.497) (0.467) (0.500) (0.449) (0.498) (0.443) (0.464) (0.457) (0.483)

Mean patents/citations before 1965 4.06 23.90 4.06 23.90 4.37 26.74 4.06 23.90 4.06 23.90
Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Crop FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
N (crops × years) 608 608 608 608 608 608 608 608 608 608

Notes: This table checks the sensitivity of the results to how the text-search algorithm allocates patents to crops. The first two columns repeat the baseline algorithm,
where the patent is allocated to the first crop mentioned in the text of the patent. The next two columns allocate the patent to the crop with the maximum mentions in the
text. Columns (5) and (6) assign one patent to each one of the crops mentioned in the text. Columns (7) and (8) assign equal weights to each one of the crops mentioned
such that the sum of the weights is one. Finally, the last two columns assign weights proportional to the number of times each crop is mentioned. All specifications include
crop and year fixed effects. Robust standard errors are shown in parentheses.



Table A7: Effects of Bracero Exclusion on Agricultural Invention, Robustness to the Sample of Crops

Baseline crops Baseline + Field Baseline + California All crops

(1) (2) (3) (4) (5) (6) (7) (8)
Patents Citations Patents Citations Patents Citations Patents Citations

Foreign share × post 3.258*** 2.271*** 2.848*** 1.481*** 3.137*** 2.329*** 2.765*** 1.545***
(0.474) (0.497) (0.414) (0.442) (0.445) (0.470) (0.399) (0.423)

Mean patents/citations before 1965 4.06 23.90 3.59 21.53 2.65 16.17 2.70 16.50
Year FE Yes Yes Yes Yes Yes Yes Yes Yes
Crop FE Yes Yes Yes Yes Yes Yes Yes Yes
N (crops × years) 608 608 988 988 988 988 1,368 1,368

Notes: This table checks the sensitivity of the results to the crops comprising the sample. The first two columns repeat the baseline results, where the
sample includes the sixteen crops for which there exist data on the foreign percentage of the total US seasonal labor. Crops are included in the data if
they employed 4,000 or more person-months of foreign labor in 1964. In the next two columns, the sample is extended to include the ten greatest field
crops (in terms of acreage, according to the 1964 agricultural census), and the foreign exposure of those crops is assumed to be equal to the foreign
percentage of the group "Hay and Grain". The sample in columns (5) and (6) includes the baseline sixteen crops and additional ten crops for which
data on the percentage of foreign workers in 1962 in California is available. The last two columns include all thirty-six crops together. All specifications
include crop and year fixed effects. Robust standard errors are shown in parentheses.



Table A8: Effects of Bracero Exclusion on Agricultural Invention, Changing the Period of the Sample

Total Patents

Last Year: 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990

First Year:

1943 2.943*** 2.924*** 2.894*** 2.939*** 2.884*** 2.886*** 2.826*** 2.761*** 2.712*** 2.702*** 2.717***
(0.460) (0.451) (0.445) (0.442) (0.439) (0.434) (0.431) (0.430) (0.428) (0.422) (0.422)

1944 2.965*** 2.946*** 2.916*** 2.961*** 2.906*** 2.909*** 2.849*** 2.784*** 2.735*** 2.725*** 2.740***
(0.464) (0.455) (0.449) (0.446) (0.443) (0.438) (0.435) (0.434) (0.432) (0.427) (0.426)

1945 3.137*** 3.116*** 3.084*** 3.129*** 3.074*** 3.076*** 3.016*** 2.951*** 2.902*** 2.890*** 2.906***
(0.472) (0.463) (0.457) (0.454) (0.450) (0.446) (0.443) (0.442) (0.440) (0.434) (0.434)

1946 3.145*** 3.124*** 3.091*** 3.136*** 3.080*** 3.083*** 3.022*** 2.958*** 2.908*** 2.896*** 2.912***
(0.480) (0.470) (0.464) (0.461) (0.458) (0.454) (0.451) (0.449) (0.447) (0.441) (0.441)

1947 3.278*** 3.255*** 3.221*** 3.265*** 3.209*** 3.212*** 3.150*** 3.085*** 3.035*** 3.022*** 3.038***
(0.492) (0.482) (0.475) (0.473) (0.469) (0.465) (0.462) (0.460) (0.458) (0.452) (0.452)

1948 3.326*** 3.301*** 3.267*** 3.311*** 3.255*** 3.258*** 3.196*** 3.132*** 3.082*** 3.068*** 3.084***
(0.501) (0.491) (0.484) (0.482) (0.478) (0.474) (0.471) (0.469) (0.467) (0.461) (0.461)

1949 3.317*** 3.292*** 3.257*** 3.301*** 3.245*** 3.248*** 3.187*** 3.122*** 3.072*** 3.058*** 3.074***
(0.515) (0.504) (0.497) (0.495) (0.491) (0.487) (0.484) (0.482) (0.480) (0.473) (0.474)

1950 3.313*** 3.287*** 3.252*** 3.296*** 3.240*** 3.243*** 3.181*** 3.116*** 3.066*** 3.052*** 3.068***
(0.529) (0.518) (0.511) (0.509) (0.505) (0.501) (0.498) (0.496) (0.494) (0.488) (0.488)

1951 3.397*** 3.369*** 3.332*** 3.376*** 3.319*** 3.321*** 3.258*** 3.193*** 3.142*** 3.127*** 3.143***
(0.543) (0.532) (0.525) (0.522) (0.518) (0.515) (0.512) (0.510) (0.508) (0.501) (0.501)

1952 3.270*** 3.242*** 3.205*** 3.249*** 3.192*** 3.194*** 3.132*** 3.066*** 3.015*** 3.000*** 3.016***
(0.543) (0.532) (0.525) (0.523) (0.519) (0.516) (0.513) (0.511) (0.508) (0.502) (0.502)

1953 3.001*** 2.975*** 2.939*** 2.983*** 2.926*** 2.929*** 2.866*** 2.801*** 2.750*** 2.737*** 2.752***
(0.531) (0.520) (0.513) (0.512) (0.508) (0.504) (0.502) (0.499) (0.497) (0.491) (0.492)

Notes: This table checks the sensitivity of the results to the period of the analysis. Every cell in the table reports the Poisson quasi-maximum
likelihood estimator of β in the equation ln [E(Innovationit|Xit)] = β ·ForeignSharei · postt + γi + δt where the analysis sample begins at one
of the years 1943-1953 and end in one of the years 1980-1990. Innovationit is the number of US patents in crop i and year t, and the other
variables are as explained above. Robust standard errors are shown in parentheses.



Table A9: Effects of Bracero Exclusion on Agricultural Invention, Robustness to the Econometric Model

Poisson Negative binomial Zero-inflated Poisson OLS

(1) (2) (3) (4) (5) (6) (7) (8)
Patents Citations Patents Citations Patents Citations Log(patents) Log(citations)

Foreign share × post 3.258*** 2.271*** 2.230*** 1.978*** 2.938*** 1.808*** 1.453*** 1.985***
(0.474) (0.497) (0.449) (0.596) (0.463) (0.424) (0.365) (0.550)

Mean patents/citations before 1965 4.06 23.90 4.06 23.90 4.06 23.90 6.20 36.52
Year FE Yes Yes Yes Yes Yes Yes Yes Yes
Crop FE Yes Yes Yes Yes Yes Yes Yes Yes
N (crops × years) 608 608 608 608 608 608 446 446

Notes: This table checks the sensitivity of the results to the econometric model in use. The dependent variable is the number of patents in odd columns and
the number of citations in even columns. The first two columns repeat the baseline results of the Poisson quasi-maximum likelihood model. Columns (3) and (4)
report the results of the negative binomial model. The next two columns show the estimates of a zero-inflated Poisson model where the equation that determines
the observed count is zero is logit with the same covariates as the main estimation equation. The last two columns are the results of an OLS model, where the
dependent variable is the natural log of patents or citations, and crop-year pairs with zero patents/citations are not included in the regression. All specifications
include crop and year fixed effects. Robust standard errors are shown in parentheses.



Table A10: Effects of Bracero Exclusion on Invention: Controlling for Linear Pretrends

Baseline Linear pretrends

(1) (2) (3) (4)
Patents Citations Patents Citations

Foreign share × post 3.258*** 2.271*** 4.856*** 4.547***
(0.474) (0.497) (0.944) (1.052)

Mean patents/citations before 1965 4.06 23.90 4.06 23.90
Year FE Yes Yes Yes Yes
Crop FE Yes Yes Yes Yes
Crop-specific linear pre-trends No No Yes Yes
N (crops × years) 608 608 608 608

Notes: Poisson quasi-maximum likelihood estimators of the Difference-in-differences model with continuous treatment. The regressions
reported in columns 3-4 include crop-specific linear pre-trends: ln [E(Innovationit|Xit)] = β ·ForeignSharei ·postt+ηi ·t ·(1−postt)+
γi + δt. Robust standard errors are shown in parentheses.



Table A11: Correlation Matrix

Foreign
share

Value/ labor Acreage/
labor

Value/
acreage

Value Labor Acreage

Foreign share 1.000

Value/ labor -0.102 1.000
(0.729)

Acreage/ labor -0.304 0.459 1.000
(0.291) (0.115)

Value/ acreage 0.303 0.087 -0.628 1.000
(0.314) (0.777) (0.022)

Value -0.450 0.378 0.573 -0.149 1.000
(0.106) (0.182) (0.041) (0.626)

Labor -0.415 0.193 0.526 -0.176 0.976 1.000
(0.110) (0.509) (0.053) (0.566) (0.000)

Acreage -0.344 0.199 0.688 -0.286 0.908 0.934 1.000
(0.228) (0.516) (0.007) (0.343) (0.000) (0.000)

Notes: Pairwise correlation between the variables. Observations are crops (N = 16). %Foreign is the share of foreign seasonal workers in the
total seasonal labor in 1964. Seasonal labor in 1964 in person-months units. Average acreage in 1948-1964 in acres. Average value of production
in 1948-1964 in 1980 dollars. P-values in parentheses.



Table A12: First Stage: Regressions of the Exposure to the Bracero Program on Instruments

Foreign percentage × post

(1) (2) (3)

Log Av. distance from Mexico × post -0.099*** -0.016
(0.012) (0.023)

Av. Mexican population percentage × post 1.375*** 1.246***
(0.141) (0.281)

Year FE Yes Yes Yes
Crop FE Yes Yes Yes
F-statistic on instrument(s) 66.67 119.74 60.03
N (crops × years) 608 608 608

Notes: This table reports the coefficients on the instruments from OLS regressions of the treatment variable
ForeignSharei · postt on the instrument zi · postt, where zi is either the log average distance from Mexico, or the
average percentage of the Mexican population in 1940 of the counties growing the crops (or both). The average
distance from Mexico of a crop i is measured by di =

∑
c dcwic where dc is the minimal distance between the

Mexican border and the centroid of county c, and wic is the percent of acreage of crop i in county c out of the
total acreage of crop i. The average Mexican population of a crop is calculated in a similar way using data from
the 1940 US population census. All specifications include crop and year fixed effects. Robust standard errors are
shown in parentheses. Last row reports the Cragg-Donald Wald F-statistic.
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Table A13: Similarity Matrix

Crop Apples Aspara Beans Celery Citrus Cotton CucumbGrapes Lettuc Melons Potato Strawb Sugarb Sugarc Tobacc Tomato

Apples 0 1 2 0 58 3 1 11 1 1 7 3 2 0 2 8
Asparagus 8 0 0 17 0 0 0 8 25 0 8 0 8 0 0 25
Beans 3 0 0 3 3 25 7 14 3 2 7 3 3 2 7 17
Celery 0 10 10 0 0 0 10 0 25 0 10 0 0 0 10 25
Citrus 63 0 2 0 0 5 4 9 1 1 7 2 1 0 0 6
Cotton 7 0 25 0 8 0 3 3 2 5 10 8 7 2 12 7
Cucumbers 1 0 6 3 6 3 0 6 6 7 15 8 1 0 7 31
Grapes 24 2 15 0 19 4 7 0 4 2 7 4 0 0 2 11
Lettuce 3 9 6 14 3 3 11 6 0 6 9 6 0 0 0 26
Melons 4 0 4 0 4 12 19 4 8 0 4 0 0 0 4 38
Potatoes 7 1 3 2 6 5 9 3 2 1 0 7 24 1 5 26
Strawberries 10 0 5 0 5 13 15 5 5 0 20 0 3 0 5 15
Sugarbeets 4 2 4 0 2 9 2 0 0 0 64 2 0 4 2 2
Sugarcane 0 0 14 0 0 14 0 0 0 0 14 0 29 0 29 0
Tobacco 5 0 10 5 0 17 12 2 0 2 15 5 2 5 0 20
Tomatoes 7 2 8 4 5 3 17 5 7 8 24 5 1 0 6 0

Notes: The similarity between two crops is measured by the number of patents in the sample that mention both crops. The weights are normalized such that each row
sums to one hundred.



Table A14: Plant-Agricultural Subclasses in the CPC Classification System: Definition of the Subclass, Number of Crop-Specific
Patents and Labor Requirements

Subclass Definition Patents Labor share

1948-64 1965-85 Total mean sd

B Soil Working In Agriculture Or Forestry; Parts, Details, Or Ac-
cessories Of Agricultural Machines Or Implements, In General

204 195 399 0.15 0.14

C Planting; Sowing; Fertilising 192 288 480 0.04 0.07
D Harvesting; Mowing 981 936 1,917 0.50 0.25
F Processing Of Harvested Produce; Hay Or Straw Presses; Devices

For Storing Agricultural Or Horticultural Produce
50 77 127 0.03 0.06

G Horticulture; Cultivation Of Vegetables, Flowers, Rice, Fruit,
Vines, Hops Or Seaweed; Forestry; Watering

198 581 779 0.26 0.15

N Preservation Of Bodies Of Humans Or Animals Or Plants Or
Parts Thereof; Biocides, E.G. As Disinfectants, As Pesticides, As
Herbicides Pest Repellants Or Attractants; Plant Growth Attrac-
tants; Plant Growth Regulators

3 38 41 0.02 0.01

Notes: The table shows the definition and summary statistics for the six subclasses of the A01 class (Agriculture) in the Cooperative Patent Classification
(CPC), which are related to plants. Columns (3)-(5) show the number of US patents belonging to each subclass that mention one of the crops in the extended
sample (Baseline + California) in 1948-1964,1965-1985, and 1948-1985, respectively. The sixth column reports the share of hours of labor related to each
subclass required to produce an acre of a crop, averaged over eighteen crops for which there exist information on both the seasonal foreign labor share and
labor requirements in California in 1960. The last column reports the standard deviation of those averages.



Table A15: Task Classification

Task Class Task Class Task Class

baling D harvest D planting cover crops C
banking out D harvest labor D plowing B
bird control G harvesting D post-harvest cleanup B
blight cutting G hauling D post-harvest mite control N
brush disposal B hauling out D pre-irrigation G
brush removal B hauling seed D preparing ground for harvest B
brush shredding B hauling to market D propping G
checking G hauling to mill D pruning G
chiseling B hoeing B racking D
chopping fern B housing D raking D
combining D hulling F removing C
cover crop G hulling boxes F renovation B
cultivating G insecticide application N ridging B
cultivation G inspection D rodent control N
cultural labor G irrigating G rolling B
cutting D irrigation G rolling beds B
cutting (seed) C irrigation preparation G scratching G
defoliate air application N knocking D seeding C
digging D land planing B shaking D
digging around trees G land preparation B shping beds B
disease control N leveling B sledding operation D
disease prevention N linstalling flumes G splitting ridges B
disking B list B spraying N
distributing D listing beds B subsoiling B
ditching B loading D subsoilingiling B
draining G lrrigating G supervision D
dusting N maintaining checks G survey for leveling B
dusting or spraying N manure application C surveying G
fertilizing C mechanical harvesting D thinning B
field hauling D mowing D threshing F
floating G mulching beds G tillage B
flooding G packing D turning vines G
frost protection G pest N tying G
furrowing B pest control N weed control N
furrowing out B picking D weeding B
girdling G planting C
harrowing B planting cover crop C

Notes: The table lists all task descriptions that appear in the labor requirement data (State of California 1963), and
the technological subclass (of the CPC Agriculture class A01) I assigned the task to (see Table A14 for the definition the
subclasses). If a task description combines multiple tasks (e.g. "cultivating and fertilizing"), I classify it according to (and
report in this table only) the first task.

52



0
.2

.4
.6

.8
1

Sh
ar

e 
of

 in
di

vid
ua

l in
ve

nt
or

s

1950 1960 1970 1980 1990

 Sample  Other patents

Figure A1: Share of Patents by Individual Inventors by Year

Notes: This figure shows the share of patents by individual inventors for the years 1948-1985. Patents are
classified as invented by individual inventors if one of the inventors is also the patent’s assignee. The sample
consists of USPTO patents in the CPC "harvesting and mowing" subclass that mention one of the 16 crops
(see text for details). Other patents include all other USPTO patents.

53



1
1.

2
1.

4
1.

6
1.

8
2

Av
er

ag
e 

nu
m

be
r o

f i
nv

en
to

rs
 p

er
 p

at
en

t

1950 1960 1970 1980 1990

 Sample  Other patents

Figure A2: Average Number of Inventors per Patent by Year

Notes: This figure shows the average number of inventors per patent for the years 1948-1985. The sample
consists of USPTO patents in the CPC "harvesting and mowing" subclass that mention one of the 16 crops
(see text for details). Other patents include all other USPTO patents.
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Figure A3: Years Between Patent Application and Publication by Year

Notes: This figure shows the average number of years between patent application and publication for the
years 1948-1985. The sample consists of USPTO patents in the CPC "harvesting and mowing" subclass that
mention one of the 16 crops (see text for details). Other patents include all other USPTO patents.
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Figure A4: Invention over Time by Crop

Notes: Low exposure: six crops with at most 3.8 percent of foreign workers. Medium exposure: five crops
with between 3.8-26.2 percent foreigners. High exposure: five crops with at least 26.2 percent foreigners. The
normalized patents measure is the number of patents divided by the crop’s pre-period (1948-1964) average
number of patents per year. Observations with (normalized) patent values higher than ten are replaced with
ten.
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B Models

This appendix constructs a theoretical framework to capture the opposing effects of labor sup-
ply on technological change. I explicitly introduce two types of technologies. The first is labor-
augmenting machines that increase the production for every level of labor (Acemoglu 1998). The
second type is labor-saving technologies in the spirit of Zeira (1998).32 I show that an increase in
the labor supply encourages the creation of new labor-augmenting technologies but discourages the
creation of new labor-saving technologies. Summing up the effects on the two different types of
technology, the overall effect of labor supply on technological progress is theoretically unclear.

B.1 Labor-Augmenting Improvements

Following Acemoglu (1998, 2002), the production function of a representative competitive firm
is:

Y = ALβ (B1)

where:

A =

∫ 1

0
qA(a)xA(a)αda , qA(a) ∈ {0, 1} , α, β > 0 , α+ β < 1 (B2)

The output produced from labor input L, assumed to be supplied inelastically, and labor-
augmenting machines {xA(a)}. The technology level is determined by the set of technologies avail-
able, {qA(a)}.

Technology products are supplied by technology monopolists. Each monopolist sets a rental
price pA(a) for the technology it supplies to the market. Following Alesina et al. (2018), I assume
that the invention cost of technology a increases with a:

KA(a) = gA(a) , g′A(a) > 0 (B3)

For simplicity, I also assume that the cost function is continuous and satisfies the Inada condi-
tions gA(0) → 0 and gA(1) → ∞. After the invention of the machine, the inventor has full rights
on that technology. The marginal cost of producing one machine unit is ψA.

32 In a recent paper, Acemoglu and Restrepo (2018) model the invention of new tasks, besides labor-
saving inventions. Note, however, that new task inventions in their model are similar to labor-augmenting
inventions, as they effectively increase the productivity of manual labor. More precisely, the invention of
a new task is equivalent to a positive labor-augmenting shock and a negative labor-saving shock, as the
share of automated tasks decreases. One can think about the invention of new tasks as an example of
labor-augmenting technology improvements.
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Definition of equilibrium: Given labor supply, L, marginal cost of machines production ψA,
entry cost function gA(a), and the Cobb-Douglas parameters α and β, an equilibrium is defined by
the wage rate w, machine prices {pA(a)}, machine quantities {xA(a)}, and the set of technologies
available {qA(a)}, such that:

1. Given the prices and the set of technologies available, {xA(a)} and L maximize the producer’s
profits.

2. For each task a ∈ [0, 1] such that qA(a) = 1, the machine price pA(a) maximizes the monop-
olist’s gross profits.

3. Free entry condition: for each task a ∈ [0, 1], the monopolist chooses qA(a) = 1 if and only if
her net profits are positive.

The competitive producer chooses the quantity of machines of each type {xA(a)}, and the
quantity of the labor input L in order to maximize profits:

max
{xA(a)},L

(∫ 1

0
qA(a)xA(a)αda

)
Lβ − wL−

∫ 1

0
qA(a)pA(a)xA(a)da (B4)

where the wage rate w, the prices of the machines {pA(a)}, and the set of machines available
{qA(a)}, are given. The price of the final good is normalized to 1.

From the producer’s first order conditions, the demand for machines is:

xA(a) =

(
pA(a)

α

)− 1
1−α

L
β

1−α (B5)

and the demand for labor is:

L = w
− 1

1−β (βA)
1

1−β (B6)

The inventor is confronted by a two-stage problem: (1) whether to enter the market and pay
the fixed cost required to develop the new technology; and (2) to choose the optimal monopolistic
price. Starting with the second problem, given that the new technology is available, the inventor
maximizes gross profits (not including the entry cost):

max
pA(a)

ΠA(a) = (pA(a)− ψA)xA(a) (B7)
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where the demand function is given in (B5). The optimal monopolistic price is:

pA(a) =
ψA
α

(B8)

and the corresponding gross profits are:

ΠA = ψA

(
1− α
α

)(
ψA
α2

) −1
1−α

L
β

1−α (B9)

which are independent of a: ΠA(a) = ΠA.
Returning to the inventor’s first stage problem: the optimal gross profits are equal across all

machine types, but the fixed cost is an increasing function of a.
the assumptions above about the entry cost function gA(a) guarantee the existence of a unique

internal threshold ā ∈ (0, 1), such that the inventor has zero net profits:

gA(ā) = ΠA(L) (B10)

To see it, note that because β ∈ (0, 1), the gross profits ΠA are positive for each combination
of the parameters ψA, β, and L. Second, because gA(0) → 0, there exist ε > 0 small enough such
that gA(ε) < ΠA. Similarly, because gA(1)→∞, there exist ε < δ < 1 close enough to 1 such that
gA(δ) > ΠA. Finally, the monotonicity and continuity of gA(a) guarantee the existences of a unique
ā ∈ (0, 1) such that gA(ā) = ΠA.

Next, notice that an increase in the labor supply, L, increases the profits of each technology
monopolist, and therefore the technology level, ā:

∂ā

∂L
> 0 (B11)

This is a pure Acemoglu (1998)’s market size effect: a larger market for the technology, namely
more workers who use it, leads to more innovation.

Next, I examine what happens to the other equilibrium outcomes of the model, namely the
number of machines (xA), the TFP (A), the output(Y ), and the wage rate (w), when the labor
supply is increasing. From equation B9, we have ΠA = C1L

β
1−α where C1 is a constant term that

depends only on the parameters ψA and β. Because, gA(a) is monotonically increasing in a, we
obtain: ∂ā

∂L > 0.
From equation B5, the amount of machines is
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xA(a) =

(
ψA
α2

)− 1
1−α

L
β

1−α ≡ C2L
β

1−α (B12)

which increases with L. Substituting into equation B2, the TFP is

A = C2āL
αβ
1−α (B13)

which is also an increasing function of L. So is the output Y = A · Lβ . The wage rate is now:

w = C3āL
− 1−α−β

1−α . (B14)

Note that with an exogenous technology level ā(L) = ā, the wage rate is a decreasing function of
L. This results from the decreasing return to scale production function, together with the constant
price of machines. However, when the technology level ā is endogenous, it increases when L increases.
This effect dampens the wage response to a change in the labor supply and might even change the
sign of the effect.

B.2 Labor-Saving Improvements

What happens when technology, rather than augmenting the production of each unit of labor,
replaces human labor? In this section, I present a simple model with labor-saving technology
progress in the spirit of Zeira (1998). The producer’s technology is now:

Y = A

∫ 1

0
(e(l) + qL(l)xL(l))β dl (B15)

where β ∈ (0, 1) and qL(l) ∈ {0, 1}.33 Each task, l, can be done by manual labor e(l). If a ma-
chine of this type exists, i.e., qL(l) = 1, the task can also be done by labor-replacing machine xL(l).
Manual labor, L, is again assumed to be supplied inelastically. The cost of inventing technology l
is:

KL(l) = gL(l) , g′L(l) > 0, (B16)

where gL(l) is continuous and satisfies the Inada conditions gL(0) → 0 and gL(1) → ∞. The

33 Qualitative similar results obtained when A =
∫ 1

0
qA(a)xA(a)αda, α + β < 1, and qA(a) ∈ {0, 1} is given

exogenously. For simplicity, I show the results of a model with a fixed A.
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marginal cost of producing one machine unit is ψL.

Definition of equilibrium: Given the labor supply, L, marginal cost of machines production
ψL, entry cost function gL(l), and the Cobb-Douglas parameter β, an equilibrium is defined by the
wage rate w, machine prices {pL(l)}, manual labor demand {e(l)}, machine quantities {xL(l)}, and
the set of technologies available {qL(l)}, such that:

1. Given the prices and the set of technologies available, {xL(l)} and {e(l)} maximize the pro-
ducer’s profits.

2. For each task l ∈ [0, 1] such that qL(l) = 1, the machine price pL(l) maximizes the monopolist’s
gross profits.

3. Free entry condition: for each task l ∈ [0, 1], the monopolist chooses qL(l) = 1 if and only if
her net profits are positive.

4. The labor market clears:
∫ 1

0 e(l)dl = L

The producer chooses the quantity of machines of each type {xL(l)}, and the quantity labor for
each task {e(l)} to maximize profits:

max
{xL(l)},{e(l)}

A

[∫ 1

0
qL(l)xL(l)βdl +

∫ 1

0
e(l)βdl

]
(B17)

−
∫ 1

0
pL(l)xL(l)dl − w

∫ 1

0
e(l)dl

where the uniform wage rate w, the prices of the machines {pL(l)}, and the set of machines
available {qL(l)}, are given. Because of the perfect substitution between manual labor and machines,
if a machine of type l is available, the producer will use only the cheaper factor. Moreover, if no one
buys the machine in equilibrium, the machine will not be invented as it is costly to invent it. For
simplicity, I assume that if the producer is indifferent between hiring manual labor or machines, she
will choose to employ only machines. Taking together, there is a threshold l̄ such that tasks l ≤ l̄

are produced by machines, and tasks l > l̄ are produced by labor. From the first-order conditions,
the demand for machines is:

xL(l) = pL(l)
− 1

1−β (βA)
1

1−β , (B18)

and the demand for labor is:

e(l) = w
− 1

1−β (βA)
1

1−β . (B19)
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Given that a machine l exists, the monopolist inventor sets the price to maximize gross profits:

ΠL(l) = (pL(l)− ψL) pL(l)
− 1

1−β (βA)
1

1−β . (B20)

Taking the first order condition with respect to the price, the optimal price is pA(a) = pA = ψA
1−β .

However, where w < ψA
1−β , because machines and labor are perfect substitutes, if the monopolistic

charged this price, the producers would choose to produce with labor and to pay a lower price.
Therefore, the monopolistic price is:

pL(l) = min(
ψL
β
,w). (B21)

Additionally, if w < ψL, the producers would lose from the production of every machine (even
without the entry cost), and therefore will choose not to produce (even if the technology already
exists).

We can distinguish between three cases: 1) w ≥ ψL
β , 2) ψL ≤ w ≤ ψL

β , and 3) w ≤ ψL.
Case 1: w ≥ ψL

β . In this range, the price of the machines does not depend on l or L. The gross

profits Π∗L =
(
ψL
β − ψL

)(
ψL
β

)− 1
1−β

(βA)
1

1−β are fixed and positive. Because of the continuity and
monotonicity of gL(l) and the Inada conditions, a unique equilibrium technology level exists that
satisfies l̄ ∈ (0, 1). This technology level is independent of L: ∂l̄

∂L = 0.
Case 2: ψL ≤ w ≤ ψL

β . In this case pL = w. The technological level l̄ is determined such that
the marginal inventor has zero net profits:

gL(l̄) = ΠL = (w − ψL) · (βA)
1

1−βw
− 1

1−β . (B22)

An increase in the wage rate increases the maximal price the inventors can charge for the
machines, and because this price is bellow the optimal unrestricted price, w < ψL

β , this increases the
profits of all inventors, hence the technology level. Now, because gL(l) is continuous, monotonically
increasing in l, and satisfies the Inada conditions, for each level of ΠL ≥ 0 a unique l̄ ∈ [0, 1) exists
such that gL(l̄) = ΠL and ∂l̄

∂ΠL
> 0. Hence, we can write w = h(l̄) such that h′(l̄) > 0. Using the

simplifying assumption that if a producer is indifferent between manual labor and machines she will
use machines only, together with the uniform wage rate and the decreasing return to scale in each
task (β < 1), we obtain e(l) = L

1−l̄ . Substituting into equation B19, we obtain:

L =

(
h(l̄)

βA

)− 1
1−β

(1− l̄) (B23)
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Differentiating L with respect to l̄, we get:

∂L

∂l̄
= −

(
h(l̄)

βA

)− 1
1−β
− h′(l̄)

βA(1− β)

(
h(l̄)

βA

)β−2
1−β

. (B24)

Because h(l̄) > 0 and h′(l̄) > 0, both terms are negative, so we have ∂L
∂l̄
< 0 and hence ∂l̄

∂L < 0.
Finally, ∂w∂L = ∂h(l̄)

∂L = ∂h(l̄)

∂l̄
∂l̄
∂L < 0

Case 3: w < ψL. In this case, the gross profits of the inventor are negative for every positive
amount of production. Hence, there is no reason to pay the fixed cost of the invention, and no
machine is invented (l̄ = 0). Changes in the labor supply in this range do not affect the technology
level ∂l̄

∂L = 0.
In what follows, I show that we can divide the parameters space into three disjoint groups that

correspond to the three cases. First, note that in all three cases ∂w∂L < 0. I have already demonstrated
this for case 2. For cases 1 and 3, it can be seen from the producer’s F.O.C:

w = βA

(
L

1− l̄

)β−1

, (B25)

and the fact that ∂l̄
∂L = 0.

Claim: For each set of parameters L, ψL, β, and entry cost function gL(l), there exist a unique

equilibrium (w, pL, xL, e.l̄). Moreover, let L̄ =
(
ψL
βA

)− 1
1−β and L =

(
ψL
β2A

)− 1
1−β (

1− g−1
L (Π∗L)

)
,

then:

1. w ≥ ψL
β ⇐⇒ L ≤ L.

2. ψL ≤ w ≤ ψL
β ⇐⇒ L ≥ L ≥ L̄.

3. w ≤ ψL ⇐⇒ L ≥ L̄.

Proof: Assume w ≥ ψL
β and let L = L. Because we are at the range of case 1, ΠL = Π∗L and

therefore l̄ = g−1
L (Π∗L). From equation B25 we obtain w = ψL

β , so we can verify that indeed w ≥ ψL
β .

Now, assume that L < L. Because w is strictly decreasing in L, we have w > w(L) = ψL
β . On the

other hand, for L < L we have w < ψL
β . Therefore, a solution of the type w ≥ ψL

β exists only if
L ≤ L, and exists and is unique if L ≤ L.

Now, consider a solution of the type w ≤ ψL. In this case l̄ = 0 and w = βALβ−1. For L = L̄,
we have w = ψL. Because w is strictly decreasing in L, a solution of this type exists if only if L ≥ L̄
and is unique if L ≥ L̄.

Finally, consider the case of ψL ≤ w ≤ ψL
β . If L = L̄, w = ψL and l̄ = 0 solve the system

of equations B22 and B25. Similarly, If L = L, the unique solution is w = ψL
β and l̄ = g−1

L (Π∗L).
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Again, because w is strictly decreasing in L, a solution of this type exists if only if L ≥ L ≥ L̄ and
is unique if L ≥ L ≥ L̄.

Notice that for each of the three ranges of w, a solution exists only if L satisfies the corresponding
parametric condition; therefore, there cannot be more than one equilibrium for a given set of
parameters.

Intuitively, when labor supply is very high, wages are low, so the marginal cost of producing each
machine is higher than its potential price, bound above by the wage rate; therefore, no technology
is invented. On the other hand, when the labor supply is very low, the optimal monopolistic price
of the machines is lower than the wage rate. In this range, the gross profits of the inventors, hence
the technological level, are constant and do not react to shifts in the labor supply.

When labor supply is not very high or very low, an exogenous increase in the labor supply
decreases the wage rate and therefore decreases the technology level, l̄:

∂l̄

∂L
< 0. (B26)

This is Hicks (1932)’s substitution effect. When the labor supply is higher, wages are lower;
therefore, the potential saving from each new machine is lower. In this case, fewer labor-saving
technologies will be developed.

I have already shown that the technology level l̄ does not depend on the labor supply when
L ≤ L and L ≥ L̄, and is decreasing in L otherwise. I have also shown that w is decreasing in L in
all regions. Next, I turn to explore what happens to the other elements of the model.

Case 1: In this region, the technology level and the monopolistic price of the machines are
constant in L; therefore the quantity of machines xL(l) is also constant for each l ≤ l̄ (denote it by

xL(l) = x∗). The output in this case is Y = A

[
l̄x∗β + (1− l̄)

(
L

1−l̄

)β]
which increases in L.

Case 2: In this case we have w = pL(l) and e(l) = x(l). As w = βAe(l)β−1 and ∂w
∂L < 0 , we

know that ∂e(l)
∂L = ∂x(l)

∂L > 0. The output is Y = Ae(l)β , increases in L.
Case 3: In this case we have w = βALβ−1 and e(l) = L. There are no machines. The output

is Y = ALβ , increases in L.

C Data Appendix

C.1 US Patents

I collected patent data from Google Patents for successful applications for patents between
1940-1990 (San 2022). The data include the full text of the patent (title, abstract, claims, and
description) as well as patent identification numbers, number of citations, CPC classification, and
application and publication (issue) years. I used the application, rather than publication year, to
define the timing of the invention because the application date is closer to the date of the invention.
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Publication dates are typically delayed by several years. I proxy the application date for patents
with missing application dates by subtracting the median lag between application and publication
dates (2.6 years) from the publication date.

C.2 Crop-level information

Total and foreign seasonal labor by crop for the years 1964-1965 was collected from (Bureau of
Employment Security 1966, Table 5, p. 11). Total and foreign seasonal labor by crop at the date
of peak foreign employment was collected from (Bureau of Employment Security 1966, Table 21, p.
48). Information for the total and Mexican seasonal labor in California for the additional ten crops
was collected from (University of California 1963, Table 5, p. 17)

To construct the labor-intensity measures, I collected data on labor requirements per acre (in
terms of hours and cost of labor) by task and crop in California in 1960 from the State of California’s
"Report and Recommendations of the Agricultural Labor Commission" (State of California 1963).
This data includes information on person-hours and labor cost per acre for the various tasks required
for the production process for California’s 25 most valuable crops in 1960. I manually classified each
task into one of the six agricultural CPC subclasses. See the definition of these subclasses in Table
A14. I classify it according to the first task if a task description combines multiple tasks (e.g.,
"cultivating and fertilizing"). Table A15 reports the classification of all tasks.

Production, acreage, and value by crop for the years 1940-1990 were collected from various
publications of the Department of Agriculture (see Table C1). Crops’ values were adjusted to 1980
dollars using the CPI-U (Bureau of Labor Statistics 2018).

Table C1: Sources of data on acreage, production, and value by crop

Crop Acreage Production Value (current prices)
Sugarbeets NASS (40-90) NASS (40-90) NASS (40-90)
Sugarcane NASS (40-90) NASS (40-90) NASS (78-90)
Bean NASS (40-90) NASS (40-90) NASS (40-90)
Cotton NASS (40-90) NASS (40-90) NASS (40-90)
Tobacco NASS (40-90) NASS (40-90) NASS (40-90)
Grapes NASS (47-90) NASS (44-90) NASS (44-90)
Potatoes NASS (40-90) NASS (40-90) NASS (40-90)
Tomatoes RE (40-59), ERS (60-90) RE (40-59), ERS (60-90) RE (40-59), ERS (60-90)
Lettuce RE (40-49), ERS (50-90) RE (40-49), ERS (50-90) RE (40-49), ERS (50-90)
Asparagus RE (40-49), ERS (50-81,83-90 ) RE (40-49), ERS (50-81,83-90 ) RE (40-49), ERS (50-81,83-90 )
Straebwrries RE (40-59, 64-69), AS (60-63), ERS (70-90) RE (40-59, 64-69), AS (60-63), ERS (70-90) RE (40-59, 64-69), AS (60-63), ERS (70-90)
Celery RE (40-59, 64-81), AS (60-63) RE (40-59, 64-81), AS (60-63) RE (40-59, 64-81), AS (60-63)
Cucumbers RE (40-59, 64-70, 74-81) RE (40-59, 64-70, 74-81) RE (40-59, 64-70, 74-81)
Mellons RE (40-81) RE (40-81) RE (40-81)
Citrus No Data CF (40-81) CF (40-81)
Apples No Data No Data No Data

Notes: This table uses the following abbreviations for the Department of Agriculture’s publications. NASS: National Agricultural Statistics Service. RE: Revised Estimates. ERS:
Economic Research Service. AS: Annual Summary. CF: Citrus Fruits.

C.3 County-level information

Share of Mexicans by county is calculated from the complete count 1940 US population census
(Ruggles et al. 2018). Distance from Mexico is the minimal distance between the Mexico border and
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the centroid of the county. I calculated the centroid of the counties using the county boundaries in
1960, downloaded from NHGIS (Manson et al. 2017). US-Mexico border points were downloaded
from U.S. Geological Survey (2007). To calculate the weight of each county in the production of each
crop, I use information on the total acreage by crop and county from the 1964 census of agriculture
(Haines et al. 2018). Farm values per acre were collected from the census of agriculture for the years
1950, 1954, 1959, 1964, 1969, 1974, 1978, and 1982 (Haines et al. 2018). Finally, the list of Bracero
and non-Bracero states used in section 7 are from (Clemens et al. 2018, Figure 2, p. 1476).
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