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Abstract
These online appendices supplement the paper “biased-belief equilibrium” published in the

American Economic Journal: Microeconomics. Appendix A presents various interesting exam-
ples. We formally present the evolutionary interpretation of our solution concept in Appendix
B, and the delegation interpretation in Appendix C. Appendix D relaxes the assumption that
biased beliefs have to be continuous. Appendix E shows how to extend our results to a setup
with partial observability. Appendix F presents our formal proofs.

A Additional Examples

A.1 A Non-Nash Strong BBE Outcome in a Zero-Sum Game

The following example shows that although the weak BBE payoff must be the Nash equilibrium
payoff in a zero-sum game, the strategy profile sustaining it need not be a Nash equilibrium.

Example 6. Consider the symmetric rock–paper–scissors zero-sum game described in Table 2.
We show that

((
Id,
(

1
3 ,

1
3 ,

1
3

))
,
(
R,
(

1
3 ,

1
3 ,

1
3

)))
is a strong BBE, in which the player 1 (he) has

Table 2: Symmetric Rock-Paper-Scissors Zero-Sum Game Payoffs
R P S

R 0, 0 0,1 1,0
P 1,0 0, 0 0,1
S 0,1 1,0 0, 0

undistorted beliefs and plays R, while player 2 (she) has a blind belief that the opponent always
mixes equally, and she mixes equally. It is immediate that

(
R,
(

1
3 ,

1
3 ,

1
3

))
∈ NE

(
G(Id,( 1

3 ,
1
3 ,

1
3 ))
)
,

and the equilibrium payoff to each player is zero. Next, observe that after any deviation of player
1 to a biased belief ψ′1, there is an equilibrium of the game G(ψ′1,( 1

3 ,
1
3 ,

1
3 )) in which player 2 mixes

equally and player 1 obtains a payoff of zero. Finally, observe that after any deviation of player 2 to
a biased belief ψ′1, player 1 obtains a payoff of at least zero (her minmax payoff in G(Id,ψ′2)) in any
Nash equilibrium in G(Id,ψ′2), which implies that player 2 obtains a payoff of at most zero, and, as
a result, she does not gain from the deviation.
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2 A ADDITIONAL EXAMPLES

A.2 Prisoner’s Dilemma with a Weakly Dominated Withdrawal Strategy

Proposition 2 implies, in particular, that defection is the unique weak BBE outcome in the prisoner’s
dilemma game. The following example demonstrates that a relatively small change to the prisoner’s
dilemma game, namely, adding a third weakly dominated “withdrawal” strategy that transforms
“cooperation” into a weakly dominated strategy, can allow us to sustain cooperation as a strong
BBE outcome. This is done by means of biases under which a player believes that his opponent is
planning to withdraw from the game whenever he intends to cooperate, which makes cooperation a
rational move.

Example 7. Consider the variant of the prisoner’s dilemma game with a third “withdrawal” action
as described in Table 3. In this symmetric game both players get a high payoff of 10 if they both

Table 3: Prisoner’s Dilemma Game with a Withdrawal Action
c d w

c 10,10 0,11 0,0
d 11,0 1,1 0,0
w 0,0 0,0 0,0

play action c (interpreted as cooperation). If one player plays d (defection) and his opponent plays
c, then the defector gets 11 and the cooperator gets 0. If both players defect, then each of them
gets a payoff of 1. Finally, if either player plays action w (interpreted as withdrawal), then both
players get 0. Observe that defection is a weakly dominant action, and that the game admits two
Nash equilibria: (w,w) and (d, d), inducing respective symmetric payoffs of zero and one.

We identify a mixed action with a vector (αc, αd, αw), where αc ≥ 0 (resp., αd ≥ 0, αw ≥ 0)
denotes the probability of choosing action c (resp., d, w). For each player i, let ψi be the following
biased-belief function:

ψ∗i (αc, αd, αw) = (0, αd, αc + αw) .

We now show that ((ψ∗1, ψ∗2) , (c, c)) is a non-monotone strong BBE in which both players obtain
a high payoff of 10 (which is strictly better than the best Nash equilibrium payoff, and strictly
better than the Stackelberg payoff of each player). Observe first that c ∈ BR (ψ∗i (c)) = BR (w),
which implies that (c, c) ∈ NE

(
G(ψ∗1 ,ψ∗2)

)
. Next, consider a deviation of player i to biased belief

ψ′i. Observe that player i can gain a payoff higher than 10 only if he plays action d with positive
probability, but this implies that the unique best reply of player j to his biased belief about player
i’s strategy is defection, which implies that player i obtains a payoff of at most one.

A.3 The Folk Theorem Result Does not Hold for All Finite Games

The following example demonstrates that the folk theorem result (Proposition 4) does not necessarily
hold for games that do not admit best replies with full undominated support.

Example 8. Consider the three-action symmetric game described in Table 4. Observe that all
the actions in the game are undominated, and that the game does not admit best replies with full
undominated support: there is no strategy of the opponent for which one of the players has a best
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Table 4: A Game in which (a, a) is not a Monotone Weak BBE Outcome
a b c

a 2, 2 2, 3 1.1, 3
b 3, 2 3, 3 1, 0
c 3.1, 1 0, 1 0, 0

reply with full support. This is so because action a (c) is a best reply only to his opponent’s strategies
that assign a probability of at least 90% to action c (a), which implies that actions a and c cannot
be best replies simultaneously. Observe that the undominated minmax payoff of each player is equal
to 1 (because the opponent can play the undominated action c, and by playing this the opponent
guarantees that the player gets a payoff of at most 1).

Consider the undominated action profile (a, a) (which induces a payoff strictly above the undomi-
nated minmax payoff to each player). We will show that (a, a) is not a monotone weak BBE (which
demonstrates that the folk theorem result of Proposition 8 does not hold in this game). Assume to
the contrary that (a, a) is a monotone weak BBE. Let ((ψ∗1, ψ∗2) , (a, a)) be a monotone weak BBE.
The fact that (a, a) ∈ NE

(
G(ψ∗1 ,ψ∗2)

)
implies that ψ∗1 (a) (c) > 90%. Consider a deviation of player

2 to having the blind belief ψ′2 = b. Observe that player 2 plays action b in any equilibrium of
G(ψ∗1 ,ψ′2). The monotonicity of ψ∗1 implies that ψ∗1 (b) (a) ≤ ψ∗1 (a) (a) ≤ 1− ψ∗1 (a) (c) ≤ 10%, which
implies that the best reply of player 1 to the perceived strategy of player 2 (ψ∗1 (b)) does not have
action c in its support. This implies that player 1 gains a payoff of at least 3 in any Nash equilibrium
of the new biased game G(ψ∗1 ,ψ′2), which contradicts ((ψ∗1, ψ∗2) , (a, a)) being a monotone weak BBE.

A.4 Examples of Games with Strategic Complements

In this subsection we analyze three examples of games with strategic complements: input games,
stag hunt games, and the traveler’s dilemma.

Our first example demonstrates how to implement the undominated Pareto optimal profile as a
strong BBE in an input (or partnership game).

Example 9 (Input games). Consider the following input game (closely related games are analyzed
in, among others, Holmstrom, 1982 and Heller and Sturrock, 2017). Let Si = Sj = [0, 1], and let
the payoff function be πi(si, sj , ρ) = si · sj −

s2
i

2ρ , where the parameter 1
ρ is interpreted as the cost of

effort. One can show that (1) the best-reply function of each agent is to exert an effort that is ρ<1
times smaller than the opponent’s (i.e., BR (sj) = ρ · sj), (2) in the unique Nash equilibrium each
player exerts no effort si = sj = 0, (3) the highest undominated strategy of each player i is si = ρ,
and (4) the undominated strategy profile (ρ, ρ) is Nash improving and yields the best payoff to both
players out of all the undominated symmetric strategy profiles. Let ψ∗i be the following biased-belief
function:

ψ∗i (sj) =


sj
ρ sj < ρ

1 sj ≥ ρ.

Observe that ψ∗i is monotone and exhibits wishful thinking. We now show that ((ψ∗1, ψ∗2) , (ρ, ρ)) is
a strong BBE. Observe that BR (ψ∗i (sj)) = BR

(
sj
ρ

)
= sj for any sj ≤ ρ, and that BR (ψ∗i (sj)) =
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BR (1) = ρ for any sj ≥ ρ. This implies that (ρ, ρ) ∈ NE
(
G(ψ∗1 ,ψ∗2)

)
, and that for any player i, any

biased belief ψ′i, and any Nash equilibrium (s′1, s′2) of the biased game G(ψ′i,ψj), s
′
j = min (s′i, ρ). This

implies that πi (s′1, s′2) ≤ πi (ρ, ρ), which shows that ((ψ∗1, ψ∗2) , (ρ, ρ)) is a strong BBE. Observe that
this BBE induces only a small distortion in the belief of each player, assuming that ρ is sufficiently
close to one:

|ψ∗i (sj)− sj | <
∣∣∣∣sjρ − sj

∣∣∣∣ < 1− ρ
ρ

.

Our second example characterizes the set of BBE outcomes (and their supporting beliefs) in stag
hunt games.

Example 10 (Stag hunt games). Stag hunt is a two-action game describing a conflict between safety
and social cooperation. Specifically, each player i has two actions: si (“stag”) and hi (“hare”), and
his ordinal preferences are (si, sj) �i(hi, sj)�i(hi, hj)�i(si, hj). Table 5 presents the payoff of a

Table 5: Stag Hunt Game (g1, g2 ∈ (0, 1] and l1, l2 > 0)
s2 h2

s1 1, 1 −l1, g2

h1 g1,−l1 0, 0

general stag hunt game, where we have normalized, without loss of generality, the payoff of each
player when playing action profile (si, sj) ((hi, hj)) to be one (zero), and where each gi is positive
and each li is in the interval (0, 1). A common interpretation of stag hunt games (à la Jean-Jacques
Rousseau) is a situation in which two individuals go hunting. Each can individually choose to hunt a
stag or to hunt a hare. Each player must choose an action without knowing the choice of the other.
If an individual hunts a stag, he must have the cooperation of his opponent in order to succeed. An
individual can get a hare by himself, but a hare is worth less than a stag. It is well known that the
game admits 3 equilibria: (si, sj), (hi, hj), and (α∗1, α∗2), with

α∗i = lj
lj + (1− gj)

∈ (0, 1) ,

where each αi represents the probability that player i plays si.
Applying the analysis of the previous section shows that the game admits 3 classes of BBE:

• Hunting the hare:((ψ∗1, ψ∗2) , (0, 0)), where each ψ∗i is an arbitrary monotone biased belief that
satisfies ψ∗i (1) ≥ α∗i .

• Hunting the stag. ((ψ∗1, ψ∗2) , (1, 1)), where each ψ∗i is an arbitrary monotone biased belief that
satisfies ψ∗i (1) ≤ α∗i .

• Mixing with less weight to hunting the stag, wishful thinking, and responsiveness to bad
news: ((ψ∗1, ψ∗2) , (β1, β2)), where for each player i: (1) the payoff is above the minmax payoff:
πi (βi, βj) ≥ 0, (2) the players hunt the stag less often in the unique Nash equilibrium: βi ∈
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(0, α∗i ), (3) wishful thinking: ψ∗i (βj) = α∗j > βj , (4) responsiveness to bad news: ψ∗i (α) = α∗j
for each α ≥ βj , and ψ∗i (α) < α∗j for each α < βj .

Observe that any profile (β1, β2), where βi ∈ (α∗i , 1), cannot be a BBE outcome. If βj = 1, then
player i can gain by deviating to ψ′i ≡ 1, as the unique equilibrium of the new biased game is (1, 1),
which induces a higher payoff to player i relative to (βi, βj). If βj < 1, then player j can gain by
deviating to ψ′j ≡ 1, as the only possible equilibria of the new biased game are (1, 1) and (βi, 1),
both of which induce a higher payoff to player j relative to (βi, βj).

Our third example deals with the traveler’s dilemma game, in which each agent has 100 pure
ordered actions that have a discrete payoff structure that resembles strategic complementarity in
interval games. We demonstrate how to implement the undominated Pareto optimal profile in this
game as a strong BBE outcome that presents wishful thinking.

Example 11 (Implementing the undominated Pareto optimal profile as a strong BBE in the trave-
ler’s dilemma).

Consider the following version of the traveler’s dilemma game (Basu, 1994). Each player has 100
actions (Ai = {1, ..., 100}), and the payoff function of each player is

πi (ai, aj) =


ai + 2 ai < aj

ai ai = aj

aj − 2 ai > aj .

The interpretation of the game is as follows. Two identical suitcases have been lost, each owned
by one of the players. Each player has to evaluate the value of his own suitcase. Both players get
a payoff equal to the minimal evaluation (as the suitcases are known to have identical values), and,
in addition, if the evaluations differ, then the player who gave the lower (higher) evaluation gets a
bonus (malus) of 2 to his payoff.

It is well known that the unique Nash equilibrium is (1, 1), which yields a low payoff of one
to each player. Observe that the traveler’s dilemma has positive spillovers, in the sense that it is
always weakly better for a player if his opponent chooses a higher action. The traveler’s dilemma
has strategic complementarity in the sense that the best reply of an agent is to stop one stage before
his opponent, and, thus, an agent has an incentive to choose a higher action if his opponent chooses
a higher action.

Observe that action 99 is the “highest” undominated action of each player (as 99 is a best reply
against 100, and as action 100 is not a best reply against any of the opponent’s strategies). In what
follows, we construct a strong BBE exhibiting wishful thinking that yields a payoff of 99 to each
player in the undominated symmetric Pareto-optimal strategy profile.

We define the biased belief ψ∗i as follows:

ψ∗i (α1, α2..., α99, α100) =
(
α1, α2, ...,

α99
2 ,

α99
2 + α100

)
.
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In what follows we show that ((ψ∗1, ψ∗2) , (99, 99)) is a strong BBE. Observe first that ψ∗i (99) =(
0, ..., 0, 1

2 ,
1
2

)
, which implies that 99 ∈ BR (ψ∗i (99)), and, thus, (99, 99) ∈ NE

(
G(ψ∗1 ,ψ∗2)

)
. Let ψ′1

be an arbitrary perception bias of player i. Observe that player i never plays action 100 in a any
Nash equilibrium of any biased game, because action 100 is not a best reply against any strategy of
player j. Next observe that player i can obtain a payoff higher than 99 only if (1) player j chooses
action 99 with a positive probability, and (2) player i chooses action 98 with a probability strictly
higher than his probability of playing action 100. However, the biased belief ψ∗j of player j implies
that if player i chooses action 98 with a probability strictly higher than his probability of playing 100,
then player j never chooses action 99 in any Nash equilibrium of the induced biased game because
action 99 yields a strictly lower payoff to player j than action 98 against the perceived strategy of
player i (because according to this perceived strategy, player i plays action 100 with a probability
strictly less than player i’s probability of playing either action 98 or action 99).

Note that the BBE equilibrium outcome (99, 99) is consistent with level-1 behavior in the level-
k and cognitive hierarchy literature (see, e.g., Stahl and Wilson, 1994; Nagel, 1995; Costa-Gomes,
Crawford, and Broseta, 2001; Camerer, Ho, and Chong, 2004), according to which each agent believes
that his opponent is following a focal non-strategic action (the action 100 in the traveler’s dilemma),
and best-replies to this belief. The notion of BBE can help explain why such level-k behavior induces
a strategic advantage in the long run, and why, therefore, it is likely to emerge in an equilibrium.

A.5 Hawk-Dove Game

The following example characterizes the set of BBE (and their supporting beliefs) in a hawk-dove
game (which is a game of strategic substitutes).

Example 12 (The Hawk-dove game). The hawk-dove (or “chicken”) game is a two-action game in
which each player i has two actions: di (interpreted as a “dove”-like action of willingness to share a
resource with the opponent) and hi (interpreted as a “hawk”-like action of insistence on getting the
whole resource, even if this requires fighting against the opponent), and where the ordinal preferences
of each player i are (hi, dj) (getting the resource) �(di, dj) (sharing the resource) �(di, hj) (not
getting the the resource) �(hi, hj) (being involved in a serious fight). Table 6 presents the payoff
of a general two-action hawk-dove game, where we have normalized, without loss of generality, the
payoff of each player when playing action profile (di, dj) ((hi, hj)) to be one (zero), and where each
gi positive and each li is in the interval (0, 1).

Table 6: Hawk-Dove Game (g1, g2 > 0 and l1, l2 ∈ (0, 1))
d2 h2

d1 1, 1 1− l1, 1 + g2

h1 1 + g1, 1− l1 0, 0

It is well known that the hawk-dove game admits three equilibria: two pure equilibria (d1, h2)
and (h1, d2), and one mixed equilibrium (α∗1, α∗2), where the probability that player i plays action
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α∗i is

α∗i = 1− lj
gj + (1− lj)

∈ (0, 1) , and π
(
α∗i , α

∗
j

)
= α∗j · (1 + gi) = 1− gi

gi + (1− li)
· li.

The undominated minmax payoff of each player coincides with the minmax payoff of each player
(as there are no dominated actions), and it is equal to MU

i = 1 − li, which is obtained when the
opponent plays hj .

Applying the analysis of the previous section shows that the game admits 3 classes of BBE:

• Pure equilibrium hawk-dove:
((
ψ∗i , ψ

∗
j

)
, (0, 1)

)
, where (1) ψ∗i is an arbitrary monotone biased

belief that satisfies ψ∗i (0) ≥ α∗i , and (2) ψ∗j is an arbitrary monotone biased belief that satisfies
ψ∗i (0) ≤ α∗i .

• Mixing (with less weight to playing dove), wishful thinking, and one-directional blindness:
((ψ∗1, ψ∗2) , (β1, β2)), where for each player i: (1) the payoff is above the minmax payoff:
πi (βi, βj) ≥ 1 − li, (2) βi ∈ (0, α∗i ) (i.e., agents play dove less often in the unique Nash
equilibrium), (3) wishful thinking: ψ∗i (βj) = α∗j > βj , and (4) responsiveness only to good
news: ψ∗i (α) = α∗j for each α ≤ βj , and ψ∗i (α) > α∗j for each α > βj .

Observe that any profile (β1, β2) where βi ∈ (α∗i , 1) cannot be a BBE outcome. If βj = 1, then player
i can gain by deviating to ψ′i ≡ 1, as the unique equilibrium of the new biased game is (0i, 1j), which
induces a higher payoff to player i relative to (βi, βj). If βj < 1, then player j can gain by deviating
into ψ′j ≡ 1, as the only possible equilibria of the new biased game are (1i, 0j) and (βi, 1j), both of
which induce a higher payoff to player j relative to (βi, βj).

B Evolutionary Interpretation of BBE

In this section we present a formal definition of strong BBE that is exactly analogous to the definition
of a stable configuration à la Dekel, Ely, and Yilankaya (2007). This shows that our static solution
concept of strong BBE captures evolutionary stability in the same way as the solution concepts used
in the literature on “indirect evolution of preferences.” Finally, we illustrate a detailed example of a
possible learning dynamic that may result in convergence to strong BBE.

B.1 Evolutionary Definition of Strong BBE à la Dekel, Ely, and Yilankaya (2007)

In this subsection we present a definition of a strong BBE that is completely analogous to the
definition of a stable configuration a la Dekel, Ely, and Yilankaya (2007) (henceforth DEY) for the
case of perfect observability of the opponent’s type (i.e., p = 1 in DEY).

In the adaptation of the notion of stable configuration à la Dekel, Ely, and Yilankaya (2007) to
our setup we change two aspects (and only these aspects):

1. We deal with general two-player games played between two different populations, rather than
DEY’s setup that deals with symmetric two-player games played within a single population.
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2. Each agent in DEY’s model is endowed with a type that determines the agent’s subjective
preferences. By contrast, in our setup each agent is endowed with a type that determines the
agent’s monotone biased belief.

3. We focus on homogeneous configurations. DEY’s general definitions allow one to deal with
heterogeneous configurations (in which different incumbents may have different types). Howe-
ver, their results mainly deal with homogeneous configurations (in which all incumbents have
the same type). Therefore, to ease notation, we focus on homogeneous configurations in our
adaptation of DEY’s definitions.

After adapting DEY’s definition of a homogeneous configuration (page 689 in DEY) to the three
aspects mentioned above, their definition is as follows:

Definition 13. A (homogeneous) configuration is a pair ((ψ∗1, ψ∗2) , (s∗1, s∗2)), where, for each player
i, function ψ∗i is a monotone biased belief of player i and s∗i is a strategy of player i satisfying
s∗i ∈ BR

(
ψ∗i

(
s∗j

))
.

It is immediate that any monotone weak BBE is a configuration.
Next, DEY present a notion of a balanced configuration (page 689 in DEY) that is trivially

satisfied by any homogeneous configuration.

Consider two continuum populations of mass one that follow a configuration ((ψ∗1, ψ∗2) , (s∗1, s∗2)).
Assume that one of these populations (say, population i) is invaded by a small group of 0 < ε << 1
mutants with a different biased belief ψ′i 6= ψ∗i . DEY assume that (1) such a mutation can destabilize
a configuration by resulting in the mutants achieving a higher fitness than the incumbents of the
same population1 i, and (2) the incumbents continue to play the same behavior among themselves
(what DEY calls “focal equilibria”).

Let Ψi be the set of all biased beliefs of player i. Following DEY (page 690 in DEY) we define
Ni,ε (ψ∗i , ψ′i) ∈ ∆ (Ψi) to be the set of distributions over biased beliefs in population i resulting from
entry by no more than ε mutants. Formally,

Ni,ε
(
ψ∗i , ψ

′
i

)
=
{
µ′i ∈ ∆ (Ψi) |µ′i =

(
1− ε′

)
· ψ∗i + ε′ · ψ′i, ε′ < ε

}
.

Given a configuration ((ψ∗1, ψ∗2) , (s∗1, s∗2)) and a post-entry distribution of biased beliefs in popu-
lation i µ̃i ∈ Ni,ε (ψ∗i , ψ′i), a post-entry focal configuration is a pair

((
µ̃i, ψ

∗
j

)
,
(
s′i, s

′
j

))
, where (1)

s′i ∈ BR
(
ψ
′
i

(
s′j

))
is interpreted as the mutant’s strategy, and (2) s′j ∈ BR

(
ψ∗j (s′i)

)
is interpreted

as population j’s strategy against the mutants. The incumbents are assumed to play the same pre-
entry strategies

(
s∗i , s

∗
j

)
when being matched among themselves. Let B (µ̃i) denote the set of all

post-entry focal configurations.
Following DEY (Definition 3 on page 691 in DEY), we define DEY-stability of a configuration

as follows.
1Under imperfect observability, a mutant can destabilize a configuration by unraveling the original equilibrium

behavior, thereby causing the incumbents’ strategies to substantially diverge following the mutant’s entry into the
population. This cannot happen under perfect observability, as the incumbents can always exhibit the same equilibrium
behavior when being matched against other incumbents (see, page 690 in DEY for a discussion of focal equilibria).
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Definition 14. Configuration ((ψ∗1, ψ∗2) , (s∗1, s∗2)) is DEY-stable if there exists ε > 0 such that for
every player i, every biased belief ψ′i, every post-entry distribution of biased beliefs µ̃i ∈ Ni,ε (ψ∗i , ψ′i),
and every post-entry focal configuration

((
µ̃i, ψ

∗
j

)
,
(
s′i, s

′
j

))
, the mutants are weakly outperformed

relative to the incumbents’ payoff (in their own population), i.e., πi
(
s′i, s

′
j

)
≤ πi

(
s∗i , s

∗
j

)
.

B.2 Equivalence between the Definitions

The following result shows that the definition of a stable configuration coincides with our definition
of strong BBE.

Proposition 10. A configuration ((ψ∗1, ψ∗2) , (s∗1, s∗2)) is DEY-stable iff it is a strong BBE.

Proof. “If” part: Let ((ψ∗1, ψ∗2) , (s∗1, s∗2)) be a strong BBE. Let ε > 0, i ∈ {1, 2}, and ψ′i ∈ Ψi.
Let µ̃i ∈ Ni,ε

(
ψ∗j , ψ

′
i

)
be a post-entry distribution of biased beliefs. Let

((
µ̃i, ψ

∗
j

)
,
(
s′i, s

′
j

))
be a

post-entry focal configuration. The fact that
((
µ̃i, ψ

∗
j

)
,
(
s′i, s

′
j

))
is a post-entry focal configuration

implies that s′i ∈ BR
(
ψ
′
i

(
s′j

))
and s′j ∈ BR

(
ψ∗j (s′i)

)
. The fact that it is a strong BBE implies

that πi
(
s′i, s

′
j

)
≤ πi

(
s∗i , s

∗
j

)
, which shows that ((ψ∗1, ψ∗2) , (s∗1, s∗2)) is DEY-stable.

“Only if” part: Let ((ψ∗1, ψ∗2) , (s∗1, s∗2)) be DEY-stable configuration. Let i ∈ {1, 2} and ψ′i ∈ Ψi.
Let

(
s′i, s

′
j

)
∈ NE

(
G(ψ′i,ψ∗j )

)
be an equilibrium of the new biased game. Let ε > 0. Let µ̃i ∈

Ni,ε (ψ∗i , ψ′i) be a post-entry distribution of biased beliefs. For each
(
s′i, s

′
j

)
∈ NE

(
G(ψ′i,ψ∗j )

)
, let((

µ̃i, ψ
∗
j

)
,
(
s′i, s

′
j

))
be a post-entry focal configuration. The assumption that ((ψ∗1, ψ∗2) , (s∗1, s∗2)) is

DEY-stable implies that πi
(
s′i, s

′
j

)
≤ πi

(
s∗i , s

∗
j

)
. This implies that ((ψ∗1, ψ∗2) , (s∗1, s∗2)) is a strong

BBE.

Remark (Allowing multiple simultaneous invasions of mutants). The definition of DEY-stability
presented above is unaffected when various groups of mutants simultaneously invade one of the
populations. By contrast, if one were to require a stable configuration to resist simultaneous invasions
of two groups of mutants, one invasion of each population, it would require a refinement of the concept
of strong BBE, in the spirit of Maynard-Smith and Price’s (1973) notion of evolutionary stability,
such that if both ψ′1 and ψ′2 are best replies against configuration ((ψ∗1, ψ∗2) , (s∗1, s∗2)), then (1) ψ∗1
should be a strictly better reply against ψ′2 (relative to ψ′1), and (2) ψ∗2 should be a strictly better
reply against ψ′1 (relative to ψ′2).

Similarly, one can formulate a definition of stability equivalent to that of monotone BBE by
requiring the mutants to be weakly outperformed in at least one post-entry focal configuration.

Definition 15. Configuration ((ψ∗1, ψ∗2) , (s∗1, s∗2)) is weakly stable if there exists ε > 0 such that
for every player i, every biased belief ψ′i, and every post-entry distribution of biased beliefs µ̃i ∈
Ni,ε (ψ∗i , ψ′i), there exists a post-entry focal configuration

((
µ̃i, ψ

∗
j

)
,
(
s′i, s

′
j

))
in which the mutants

are weakly outperformed relative to the incumbents’ payoff, i.e., πi
(
s′i, s

′
j

)
≤ πi

(
s∗i , s

∗
j

)
.

The following result shows that the definition of a weakly stable configuration coincides with
our definition of weak BBE. The simple proof, which is analogous to the proof of 10, is omitted for
brevity.
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Proposition 11. A configuration ((ψ∗1, ψ∗2) , (s∗1, s∗2)) is weakly stable iff it is a monotone weak BBE.

Finally, one can formulate a definition of stability equivalent to that of a BBE by requiring the
mutants to be weakly outperformed in at least one plausible post-entry focal configuration.

Definition 16. Given configuration ((ψ∗1, ψ∗2) , (s∗1, s∗2)), ε > 0 , i ∈ {1, 2}, biased belief ψ′i, and a
post-entry distribution of biased beliefs µ̃i ∈ Ni,ε (ψ∗i , ψ′i), we say that a post-entry focal configuration((
µ̃i, ψ

∗
j

)
,
(
s′i, s

′
j

))
is implausible if: (1) ψ∗j (s′i) = ψ∗j (s∗i ), (2) s′j 6= s∗j , and (3)

((
µ̃i, ψ

∗
j

)
,
(
s′i, s

∗
j

))
is

a post-entry focal configuration. A post-entry focal configuration is plausible if it is not implausible.

Definition 17. Configuration ((ψ∗1, ψ∗2) , (s∗1, s∗2)) is plausibly stable if there exists ε > 0 such that
for every player i, every biased belief ψ′i, and every post-entry distribution of biased beliefs µ̃i ∈
Ni,ε (ψ∗i , ψ′i), there exists a plausible post-entry focal configuration

((
µ̃i, ψ

∗
j

)
,
(
s′i, s

′
j

))
in which the

mutants are weakly outperformed relative to the incumbents’ payoff, i.e., πi
(
s′i, s

′
j

)
≤ πi

(
s∗i , s

∗
j

)
.

The following result shows that the definition of a plausibly stable configuration coincides with
our definition of BBE. The simple proof, which is analogous to the proof of 10, is omitted for brevity.

Proposition 12. A configuration ((ψ∗1, ψ∗2) , (s∗1, s∗2)) is plausibly stable iff it is a BBE.

B.3 Illustration of the Evolutionary Interpretation

Similar to DEY, we have presented a reduced-form static notion of evolutionary stability, without
formally modeling a detailed dynamics according to which the biased beliefs and the strategies
co-evolve. In Section 3.6 we present the essential features of this evolutionary process, which are
analogous to DEY’s essential features (see first paragraph in Section 2.2 in DEY): agents are endowed
by biased beliefs, these biased-beliefs induce equilibrium behavior in the biased game (presumably
by a relatively quick adjustment of the biased players that leads to equilibrium behavior in the biased
game), behavior determines “success,” and success (the material payoffs) regulates the evolution of
biased beliefs (presumably by a slow process in which agents occasionally die and are replaced by
new agents who are more likely to mimic the biased beliefs of more successful incumbents).

In what follows, we illustrate this evolutionary process and its underlying dynamics in an exam-
ple. Specifically, we present a strong BBE in an “input” game and we illustrate how this strong BBE
can persist, given plausible evolutionary dynamics through which the composition of the population
evolves.

Example 13 (Example 9 revisited). Consider the following “input” game. Let Si = Sj = [0, 1], and
let the payoff function be πi(si, sj , ρ) = si · sj −

s2
i

2ρ , where the parameter 1
ρ is interpreted as the cost

of effort, and we assume that ρ ∈ (0.5, 1). One can show that (1) the best-reply function of each
agent is to exert an effort that is ρ times smaller than the opponent’s (i.e., BR (sj) = ρ · sj), (2)
in the unique Nash equilibrium of the unbiased game each player exerts no effort si = sj = 0, and
(3) the strategy profile (ρ, ρ) yields a payoff of ρ2 − ρ

2 > 0, which is the highest symmetric payoff
among all strategy profiles in which agents do not use strictly dominated strategies. Let ψ∗i be the
following biased-belief function:

ψ∗i (sj) =


sj
ρ sj < ρ

1 sj ≥ ρ.
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In Example 9 we have shown that ((ψ∗1, ψ∗2) , (ρ, ρ)) is a strong BBE. In what follows we illustrate how
this strong BBE can persist. Consider a small group of mutants of population i who have undistorted
beliefs. Assume that, initially, the incumbents of population j use the same strategy against the
mutants as they use against the incumbents of population i (i.e., strategy ρ), and the mutants
gradually learn to best reply to the incumbents’ behavior by playing ρ2. Recall that we assume that
the agents of population j identify the mutants as a separate group of agents who behave differently
than the rest of population j (without assuming that the incumbents of population j know anything
about the biased beliefs of the mutants). These incumbents perceive the mutants’ play as ρ (due
to the incumbents’ biased beliefs), and gradually learn to best reply to this perceived strategy by
playing ρ2. This, in turn, induces the mutants to adapt their play to playing ρ3, and, in response,
the incumbents of population j adapt their play against the mutants and play ρ3 (the best reply
to the mutants’ perceived strategy ρ2). This mutual gradual adaptation process continues until the
play in the matches between incumbents of population j and mutants of population i converges to
(0, 0).

Finally, following the convergence of the behavior in the matches against the mutants to (0, 0),
a slow flow of new agents begins to influence the composition of the population. Each new agent
randomly chooses a mentor among the agents in his own population, where agents with higher
fitness are more likely to be chosen as mentors. As the mutants get a much lower payoff (0) than
the incumbents of population i ( ρ2 − ρ

2 > 0) in the underlying game, their fitness is expected to be
lower, and they are much less likely to be chosen as mentors. As a result the share of mutants in
the population slowly shrinks until they disappear from the population.

C Principal-Agent (Subgame-Perfect) Definition of BBE

In this appendix we present an equivalent definition of BBE as a subgame-perfect equilibrium of a
two-stage game in which in the first round each player chooses the biased belief of the agent who
will play on his behalf in the second round.

C.1 The Two-Stage Game ΓG

Given an underlying two-player normal-form game G = (S, π) define ΓG as the following four-player
two-stage extensive-form game. The four players in the game Γ are: principal 1 and principal 2
(who choose representative agents for the second stage), agent 1 (who plays on behalf of principal 1
in round 2), and agent 2 (who plays on behalf of principal 2 in round 2).

The game ΓG has 2 stages. In the first stage, the principals simultaneously choose biased beliefs
for their agents. That is, each principal i chooses a biased belief ψi : Sj → Sj for agent i. In the
second stage the agents simultaneously choose their strategies. That is, each agent i chooses strategy
si ∈ Si. The payoff of each principal i is πi (si, sj). The payoff of each agent i is πi (ψi (si) , sj) . Let
Ψi be the set of all feasible (monotone) biased beliefs of agent i.

A pure strategy profile of ΓG (henceforth ΓG-strategy profile) is a tuple (ψ1, ψ2, σ1, σ2), where
each ψi is a biased belief, and each σi : Ψ1 ×Ψ2 → Si is a function assigning a strategy to each pair
of (monotone) biased beliefs. Let SPE (ΓG) denote the set of all subgame-perfect equilibria of Γ.



12 C PRINCIPAL-AGENT (SUBGAME-PERFECT) DEFINITION OF BBE

C.2 Subgame-Perfect Definition of Weak BBE

The following result shows that a weak BBE is equivalent to a subgame-perfect equilibrium of Γ.
Formally:

Proposition 13. Let G be a game. Strategy profile ((ψ∗1, ψ∗2) , (s∗1, s∗2)) is a weak BBE of G iff there
exists a subgame-perfect equilibrium ((ψ∗1, ψ∗2) , (σ∗1, σ∗2)) of ΓG satisfying σ∗i (ψ∗i ) = s∗i for each player
i.

Proof. “If side”: Let ((ψ∗1, ψ∗2) , (σ∗1, σ∗2)) ∈ SPE (ΓG) be a subgame-perfect equilibrium of Γ sa-
tisfying σ∗i (ψ∗i ) = s∗i for each player i. Let ψ′i be a biased belief of player i. Let s′1 = σ∗1

(
ψ
′
i, ψ
∗
j

)
and s′2 = σ∗2

(
ψ
′
i, ψ
∗
j

)
. The fact that ((ψ∗1, ψ∗2) , (σ∗1, σ∗2)) ∈ SPE (ΓG) implies that (1) (s′1, s′2) ∈

NE

(
G(ψ′i ,ψ∗j )

)
and (2) πi (s′1, s′2) ≤ πi (s∗1, s∗2). This implies that ((ψ∗1, ψ∗2) , (s∗1, s∗2)) is a weak BBE

of G.
“Only if side”: Let ((ψ∗1, ψ∗2) , (s∗1, s∗2)) be a weak BBE of G. We define (σ∗1, σ∗2) as follows:2 (1)

σ∗i (ψ∗1, ψ∗2) = s∗i , (2) for each biased belief ψ′i 6= ψ∗i , define σ∗i
(
ψ′i, ψ

∗
j

)
= s′i and σ∗j

(
ψ′i, ψ

∗
j

)
= s′j

such that
(
s′i, s

′
j

)
∈ NE

(
G(ψ′i,ψ∗j )

)
and πi

(
s′i, s

′
j

)
≤ πi

(
s∗i , s

∗
j

)
(such a pair

(
s′i, s

′
j

)
exists due to

((ψ∗1, ψ∗2) , (s∗1, s∗2)) being a weak BBE of G), and (3) for each pair of biased beliefs ψ′i 6= ψ∗i and
ψ′j 6= ψ∗j , define σ∗i

(
ψ′i, ψ

′
j

)
= s′i and σ∗j

(
ψ′i, ψ

′
j

)
= s′j such that

(
s′i, s

′
j

)
∈ NE

(
G(ψ′i,ψ′j)

)
. The

definition of (σ∗1, σ∗2) immediately implies that ((ψ∗1, ψ∗2) , (σ∗1, σ∗2)) ∈ SPE (ΓG).

C.3 Subgame-Perfect Definition of BBE

Next, we present an equivalent definition of a BBE as a refinement of a subgame-perfect equilibrium
of ΓG. Specifically, a subgame-perfect equilibrium (ψ∗1, ψ∗2, σ∗1, σ∗2) is required to remain a subgame-
perfect equilibrium even after changing the off-the equilibrium path behavior to a different Nash
equilibrium of the induced subgame in which (I) a single player (say, player j) has deviated to a
different biased-belief, (II) the non-deviator perceives the deviator’s strategy in the same way as the
original on-the-equilibrium path opponent’s strategy, and (III) the non-deviator changes his behavior
such that after the change it coincides with his on-the-equilibrium path behavior. Formally,

Definition 18. A subgame-perfect equilibrium (ψ∗1, ψ∗2, σ∗1, σ∗2) ∈ SPE (ΓG) is a plausible subgame-
perfect equilibrium if (I) the biased beliefs ψ∗1 and ψ∗2 are monotone, and (II) (ψ∗1, ψ∗2, σ′1, σ′2) ∈
SPE (Γ) for each pair of second-stage strategies σ′1, σ′2 satisfying: (1)

(
ψ
′
1, ψ

′
2, σ

′
1, σ
′
2

)
∈ SPE (ΓG) for

some pair of first-stage strategies
(
ψ
′
1, ψ

′
2

)
(i.e., second-stage behavior is consistent with equilibrium

behavior in all subgames) and (2) if σ′i
(
ψ
′
1, ψ

′
2

)
6= σ∗i

(
ψ
′
1, ψ

′
2

)
, then: (I) ψ′i = ψ∗i and ψ′j 6= ψ∗j , (II)

ψ∗i

(
σ
′
j

(
ψ
′
1, ψ

′
2

))
= ψ∗i

(
σ∗j

(
ψ
′
1, ψ

′
2

))
, and (III) σ′j

(
ψ
′
1, ψ

′
2

)
= σ∗j

(
ψ
′
1, ψ

′
2

)
.

Proposition 14. Let G be a game. Strategy profile ((ψ∗1, ψ∗2) , (s∗1, s∗2)) is a BBE of G iff there exists
a plausible subgame-perfect equilibrium ((ψ∗1, ψ∗2) , (σ∗1, σ∗2)) of ΓG satisfying σ∗i (ψ∗i ) = s∗i for each
player i.

The simple proof, which is analogous to the proof of Proposition 13, is omitted for brevity.
2The definition of (σ∗1 , σ∗2) relies on the axiom of choice.
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C.4 Subgame-Perfect Definition of Strong BBE

Finally, we present an equivalent definition of a strong BBE as a refinement of a subgame-perfect
equilibrium of Γ, which remains an equilibrium even after changing off the equilibrium path in
subgames to other Nash equilibria of the induced subgames. Formally,

Definition 19. A subgame-perfect equilibrium (ψ∗1, ψ∗2, σ∗1, σ∗2) ∈ SPE (ΓG) is a strong subgame-
perfect equilibrium if (I) the biased beliefs ψ∗1 and ψ∗2 are monotone, and (II) (ψ∗1, ψ∗2, σ′1, σ′2) ∈
SPE (ΓG) for each pair of second-stage strategies σ′1, σ′2 satisfying: (1)

(
ψ
′
1, ψ

′
2, σ

′
1, σ
′
2

)
∈ SPE (ΓG)

for some pair of first-stage strategies ψ′1, ψ
′
2 (i.e., second-stage behavior is consistent with equili-

brium behavior in all subgames) and (2) σ′i (ψ∗1, ψ∗2) = σ∗i (ψ∗1, ψ∗2) (i.e., behavior after (ψ∗1, ψ∗2) is
unchanged).

Our final result shows that a strong BBE is equivalent to a strong subgame-perfect equilibrium
of Γ. Formally:

Proposition 15. Let G be a game. Strategy profile ((ψ∗1, ψ∗2) , (s∗1, s∗2)) is a strong BBE of G iff
there exists a strong subgame-perfect equilibrium ((ψ∗1, ψ∗2) , (σ∗1, σ∗2)) of Γ satisfying σ∗i (ψ∗i ) = s∗i for
each player i.

The simple proof, which is analogous to the proof of Proposition 13, is omitted for brevity.

D Discontinuous Biased Beliefs

In this appendix we present an alternative definition of BBE that relaxes the assumption that biased
beliefs have to be continuous. We show that all BBE characterized in the main text remain BBE
when deviators are allowed to use discontinuous biased beliefs.

D.1 Adapted Definitions: Quasi-equilibria

We redefine a biased belief ψi : Sj → Sj to be an arbitrary (rather than continuous) function that
assigns to each strategy of the opponent a (possibly distorted) belief about the opponent’s play. The
definition of a configuration (ψ∗, s∗) is left unchanged (i.e., we require that

(
s∗i , s

∗
j

)
∈ NE (Gψ∗)).

Recall that a configuration is a BBE if each biased belief is a best reply to the opponent’s biased
belief, in the sense that an agent who chooses a different biased belief is weakly outperformed in
the induced equilibrium of the new biased game. Allowing discontinuous beliefs implies that some
biased games G(ψ1,ψ2) in which one (or both) of the biases are discontinuous may not admit Nash
equilibria. This requires us to adapt the definition of a BBE to deal with behavior in biased games
that do not admit Nash equilibria. We do so by assuming that the resulting behavior in a biased
game that does not admit a Nash equilibrium is a “j-quasi-equilibrium,” in which the non-deviator
(player j) best replies to the perceived behavior of the deviator (player i), while the deviator is
allowed to play arbitrarily. Formally:

Definition 20. Let (ψi, ψj) be a profile of biased beliefs, and let j be one of the players (interpreted
as the non-deviator); then we define QEj

(
G(ψi,ψj)

)
as the set of j-quasi-equilibria of the biased
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game G(ψi,ψj) as follows:

QEj
(
G(ψi,ψj)

)
=

NE
(
G(ψi,ψj)

)
NE

(
G(ψi,ψj)

)
6= ∅

{(si, sj) |sj ∈ BR (ψj (si))} NE
(
G(ψi,ψj)

)
= ∅.

Note that any biased game admits a j-quasi-equilibrium.

D.2 Adapted Definitions: BBE′

We redefine our notions of BBE as follows, and write them as BBE′. In a strong BBE′, the deviator
(player i) is required to be outperformed in all j-quasi-equilibria, and biased beliefs are required
to be monotone. In a weak BBE′, the deviator is required to be outperformed in at least one j-
quasi-equilibrium. The notion of a BBE′ is in between these two notions. Specifically, in a BBE′,
the biased beliefs are required to be monotone, and, in addition, the deviator (player i) is required
to be outperformed in at least one plausible j-quasi-equilibrium of the new biased game, where
implausible j-quasi-equilibria are defined as follows. We say that a j-quasi-equilibrium of a biased
game induced by a deviation of player i is implausible if (1) player i’s strategy is perceived by the
non-deviating player j as coinciding with player i’s original strategy, (2) player j plays differently
relative to his original strategy, and (3) if player j were playing his original strategy, this would
induce a j-quasi-equilibrium of the biased game. That is, implausible j-quasi-equilibria are those in
which the non-deviating player j plays differently against a deviator even though player j has no
reason to do so: player j does not observe any change in player i’s behavior, and player j’s original
behavior remains an equilibrium of the biased game. Formally:

Definition 21. Given configuration (ψ∗, s∗), deviating player i, and biased belief ψ′i, we say that
a j-quasi-equilibrium of the biased game

(
s′i, s

′
j

)
∈ QEj

(
G(ψ′i,ψ∗j )

)
is implausible if: (1) ψ∗j (s′i) =

ψ∗j (s∗i), (2) s∗j 6= s′j , and (3)
(
s′i, s

∗
j

)
∈ QEj

(
G(ψ′i,ψ∗j )

)
. A j-quasi-equilibrium is plausible if it is

not implausible. Let PQEj
(
G(ψ′i,ψ∗j )

)
be the set of all plausible j-quasi-equilibria of the biased

game G(ψ′i,ψ∗j ).

Note that it is immediate from Definition 21 and the nonemptiness of QEj
(
G(ψ′i,ψ∗j )

)
that

PQEj

(
G(ψ′i,ψ∗j )

)
is nonempty.

Definition 22. Configuration (ψ∗, s∗) is:

1. a strong BBE ′ if (I) each biased belief ψ∗i is monotone, and (II) πi
(
s′i, s

′
j

)
≤ πi

(
s∗i , s

∗
j

)
for

every player i, every biased belief ψ′i, and every j-quasi-equilibrium
(
s′i, s

′
j

)
∈ QEj

(
G(ψ′i,ψ∗j )

)
;

2. a weak BBE ′ if for every player i and every biased belief ψ′i, there exists a j-quasi-equilibrium(
s′i, s

′
j

)
∈ QEj

(
G(ψ′i,ψ∗j )

)
, such that πi

(
s′i, s

′
j

)
≤ πi

(
s∗i , s

∗
j

)
;
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3. a BBE ′ if (I) each biased belief ψ∗i is monotone, and (II) for every player i and every biased
belief ψ′i, there exists a plausible j-quasi-equilibrium

(
s′i, s

′
j

)
∈ PQEj

(
G(ψ′i,ψ∗j )

)
, such that

πi
(
s′i, s

′
j

)
≤ πi

(
s∗i , s

∗
j

)
.

It is immediate that any strong BBE′ is a BBE′, and that any BBE′ is a weak BBE′.
(resp., strong, weak) BBE′ (ψ∗, s∗) is continuous if each biased function ψ∗i is continuous. Note,

that deviators are allowed to choose discontinuous biased beliefs.

D.3 Robustness of BBE to Discontinuous Biased Beliefs

In what follows we observe that all the BBE that we characterize in all the results of the paper are
also BBE′. That is, all of our BBE are robust to allowing deviators to use discontinuous biased
beliefs. Specifically, any BBE (resp., weak BBE, strong BBE) that is characterized in any result
(or example) in the paper, is a continuous BBE′ (resp., weak continuous BBE′, strong continuous
BBE′).

The reason why this observation is true is that in all the arguments in the proofs of the paper’s
results for why a configuration

((
ψ∗i , ψ

∗
j

)
,
(
s∗i , s

∗
j

))
is a BBE, when we show that a deviator (player

i) is outperformed after deviating to biased belief ψ′i and after the players play strategy profile(
s′i, s

′
j

)
, we rely only on the assumption that the non-deviator (player j) best replies to the deviator

(i.e., that sj ∈ BR
(
ψ∗j (s′i)

)
, which is implied by assuming

(
s′i, s

′
j

)
∈ QEj

(
G(ψ′i,ψ∗j )

)
), and we do

not use in any of the arguments the assumption that the deviator plays a best reply (i.e., we do not
rely on si ∈ BR

(
ψ
′
i

(
s′j

))
in any of the proofs).

E Partial Observability

Throughout the paper we assume that if an agent deviates to a different biased belief, then the
opponent always observes this deviation. In this appendix, we relax this assumption, and show that
our results hold also in a setup with partial observability (some results hold for any level of partial
observability, while others hold for a sufficiently high level of observability).

E.1 Restricted Biased Games

Let p ∈ [0, 1] denote the probability that an agent who is matched with an opponent who deviates
to a different biased belief privately observes the opponent’s deviation (henceforth, observation
probability). If an agent does not observe the deviation, then he continues playing his original
configuration’s strategy.

Our definitions of configuration and biased game remain unchanged. We now define a restricted
biased game G(ψ′i,ψ∗j ,s∗j ,p) as a game with a payoff function according to which (1) each player’s payoff
is determined by the opponent’s perceived strategy, and (2) the non-deviator is restricted to playing
s∗j with probability p (i.e., when not observing the opponent’s deviation). Formally:
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Definition 23. Given an underlying game G = (S, π), a profile of biased beliefs
(
ψ′i, ψ

∗
j

)
, and a

strategy s∗j of player j (interpreted as the non-deviator), let the restricted biased game G(ψ′i,ψ∗j ,s∗j ,p) =(
S, π̃

(
ψ′i, ψ

∗
j , s
∗
j , p
))

be defined as follows:

π̃i
(
ψ′i, ψ

∗
j , s
∗
j , p
)

(si, sj) = p · πi
(
si, ψ

′
i (sj)

)
+ (1− p) · πi

(
si, ψ

′
i

(
s∗j

))
, and

π̃j
(
ψ′i, ψ

∗
j , s
∗
j , p
)

(si, sj) = p · πj
(
sj , ψ

∗
j (si)

)
+ (1− p)πi

(
s∗j , ψ

∗
j (si)

)
.

A Nash equilibrium of a p-restricted biased game is defined in the standard way. Formally, a
pair of strategies s∗ = (s′1, s′2) is a Nash equilibrium of a restricted biased game G(ψ′i,ψ∗j ,s∗j ,p), if each
s′i is a best reply against the perceived strategy of the opponent, i.e.,

s′i = argmaxsi∈Si

(
π̃i
(
ψ′i, ψ

∗
j , s
∗
j , p
) (
si, s

′
j

))
.

Let NE
(
G(ψ′i,ψ∗j ,s∗j)

)
⊆ S1 × S2 denote the set of all Nash equilibria of the restricted biased

game G(ψ′i,ψ∗j ,s∗j ,p).
Observe that the set of strategies of a biased game is convex and compact, and the payoff function

π̃i
(
ψ′i, ψ

∗
j , s
∗
j , p
)

: Si × Sj → R is weakly concave in the first parameter and continuous in both
parameters. This implies (due to a standard application of Kakutani’s fixed-point theorem) that
each restricted biased game G(ψ′i,ψ∗j ,s∗j ,p) admits a Nash equilibrium (i.e., NE

(
G(ψ′i,ψ∗j ,s∗j ,p)

)
6= ∅).

E.2 p-BBE

We are now ready to define our equilibrium concept. Configuration (ψ∗, s∗) is a p-BBE if each biased
belief is a best reply to the opponent’s biased belief, in the sense that an agent who chooses a different
biased belief is weakly outperformed in the induced equilibrium of the new restricted biased game.
We present three versions of p-BBE that differ with respect to the equilibrium selection when the
new biased game admits multiple equilibria. In a strong p-BBE (I) each biased-belief is monotone,
and (II) the deviator is required to be outperformed in all Nash equilibria of the new restricted biased
game. In a weak BBE, the deviator is required to be outperformed in at least one equilibrium of
the new restricted biased game.

The notion of a p-BBE is in between these two notions. Specifically, in at p-BBE (I) each biased-
belief is monotone, and (II) the deviator is required to be outperformed in at least one plausible
equilibrium of the new restricted biased game, where implausible equilibria are defined as follows.
We say that a Nash equilibrium of a restricted biased game induced by a deviation of player i is
implausible if (1) player i’s strategy is perceived by the non-deviating player j as coinciding with
player i’s original strategy, (2) player j plays differently relative to his original strategy, and (3) if
player j were playing his original strategy, this would induce an equilibrium of the biased game.
That is, implausible equilibria are those in which the non-deviating player j plays differently against
a deviator even though player j has no reason to do so: player j does not observe any change in
player i’s behavior, and player j’s original behavior remains an equilibrium of the biased game.



E.3 Extension of Results 17

Formally:

Definition 24. Given configuration (ψ∗, s∗), deviating player i, and biased belief ψ′i, we say that a
Nash equilibrium of the restricted biased game

(
s′i, s

′
j

)
∈ NE

(
G(ψ′i,ψ∗j ,s∗j ,p)

)
is implausible if: (1)

ψ∗j (s′i) = ψ∗j (s∗i), (2) s∗j 6= s′j , and (3)
(
s′i, s

∗
j

)
∈ NE

(
G(ψ′i,ψ∗j ,s∗j ,p)

)
. An equilibrium is plausible

if it is not implausible. Let PNE
(
G(ψ′i,ψ∗j ,s∗j ,p)

)
be the set of all plausible equilibria of the biased

game G(ψ′i,ψ∗j ,s∗j ,p).

Note that it is immediate from Definition 24 and the nonemptiness of NE
(
G(ψ′i,ψ∗j ,s∗j ,p)

)
that

PNE

(
G(ψ′i,ψ∗j ,s∗j ,p)

)
is nonempty.

Definition 25. Configuration (ψ∗, s∗) is:

1. a strong p-BBE if (I) each biased belief ψ∗i is monotone, and (II) πi
(
s′i, s

′
j

)
≤ πi

(
s∗i , s

∗
j

)
for

every player i, every biased belief ψ′i, and every Nash equilibrium
(
s′i, s

′
j

)
∈ NE

(
G(ψ′i,ψ∗j ,s∗j ,p)

)
;

2. a weak p-BBE if for every player i and every biased belief ψ′i, there exists a Nash equilibrium(
s′i, s

′
j

)
∈ NE

(
G(ψ′i,ψ∗j ,s∗j ,p)

)
, such that πi

(
s′i, s

′
j

)
≤ πi

(
s∗i , s

∗
j

)
;

3. a p-BBE if (I) each biased belief ψ∗i is monotone, and (II) for every player i and every biased
belief ψ′i, there exists a plausible Nash equilibrium

(
s′i, s

′
j

)
∈ PNE

(
G(ψ′i,ψ∗j ,s∗j ,p)

)
, such that

πi
(
s′i, s

′
j

)
≤ πi

(
s∗i , s

∗
j

)
.

It is immediate that: (1) any strong p-BBE is a p-BBE, and that any p-BBE is a weak p-BBE, and
(2) the definition of 1-BBE (resp., weak 1-BBE, strong 1-BBE) coincides with the original definition
of BBE (resp., weak BBE, strong BBE).

E.3 Extension of Results

In what follows we sketch how to extend our results to the setup of partial observability. The
adaptations of the proofs are relatively simple, and, for brevity, we only sketch the differences with
respect to the original proofs.

E.3.1 Adaptation of Section 4 (Nash Equilibria and BBE Outcomes)

The example that some Nash equilibria cannot be supported as the outcomes of weak P -BBE with
undistorted beliefs can be extended for any p > 0.

Example 14 (Example 1 revisited. Cournot equilibrium cannot be supported by undistorted beliefs).
Consider the following symmetric Cournot game with linear demand G = (S, π): Si = [0, 1] and
πi (si, sj) = si · (1− si − sj) for each player i. The unique Nash equilibrium of the game is s∗i = s∗j =
1
3 , which yields both players a payoff of 1

9 . Fix observation probability p > 0. Assume to the contrary
that this outcome can be supported as a weak p-BBE by the undistorted beliefs ψ∗i = ψ∗j = Id. Fix
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a sufficiently small 0 < ε << 1. Consider a deviation of player 1 to the blind belief ψ′i ≡ 1
3 − 2 · ε.

Note that this blind belief has a unique best reply: s′i = 1
3 + ε. The unique equilibrium of the

restricted biased game G(ψ′i,ψ∗j ,s∗j ,p) is s′j = 1
3 −

ε
2 , s

′
i = 1

3 + ε, which yields the deviator a payoff of
1
9 + ε

6 −
ε2

2 with probability p (when his deviation is observed by player 2) and a payoff of 1
9 − ε

2 with
probability 1− p (when his deviation is not observed by player 2). For a sufficiently small ε > 0 the
expected payoff of the deviator is strictly larger than 1

9 .

All the results of Section 4 hold for any observation probability p ∈ [0, 1] with minor adaptations
to the proofs.

Proposition 16 (Proposition 1 extended). Let (s∗1, s∗2) be a (strict) Nash equilibrium of the game
G = (S, π). Let ψ∗1 ≡ s∗2 and ψ∗2 ≡ s∗1. Then ((ψ∗1, ψ∗2) , (s∗1, s∗2)) is a (strong) p-BBE for any p ∈ [0, 1].

Claim 2 (Claim 1 extended). The unique Nash equilibrium payoff of a zero-sum game is also the
unique payoff in any weak p-BBE for any p ∈ [0, 1].

Proposition 17 (Proposition 2 extended). If a game admits a strictly dominant strategy s∗i for
player i, then any weak p-BBE outcome is a Nash equilibrium of the underlying game.

E.3.2 Adaptation of Section 6 (Main Results)

Adaptation of Subsection 6.1 (Preliminary Result) Minor adaptations of the proof of Pro-
position 3 show that it holds for any p ∈ [0, 1]. Formally:

Proposition 18. Let p ∈ [0, 1]. If a strategy profile s∗ = (s∗1, s∗2) is a weak p-BBE outcome, then
(1) the profile s∗ is undominated and (2) πi (s∗) ≥MU

i .

Adaptation of Subsection 6.2 (Games with Strategic Complements) Minor adaptations
to the proofs of the results of Subsection 6.2 show that most of these results (namely, part (1) of
Proposition 4 and Corollaries 2 and 3) hold for any p ∈ [0, 1], while part (2) of Proposition 4 holds
for p-s sufficiently close to one. Formally:

Proposition 19 (Proposition 4 extended). Let G be a game with strategic substitutes and positive
externalities.

1. Fix p ∈ [0, 1]. Let (s∗1, s∗2) be a p-BBE outcome. Then (s∗1, s∗2) is (I) undominated, and for each
player i: (II) πi

(
s∗i , s

∗
j

)
≥MU

i , and (III) s∗i ≤ max
(
BR

(
s∗j

))
(underinvestment).

2. Let (s∗1, s∗2) be an undominated profile satisfying for each player i: (II’) πi
(
s∗i , s

∗
j

)
> M̃U

i , and

(III) s∗i ≤ max
(
BR

(
s∗j

))
. Then there exists p̄ < 1 such that (s∗1, s∗2) is a p-BBE outcome for

any p ∈ [p̄, 1].
Moreover, if πi (si, sj) is strictly concave then (s∗1, s∗2) is a strong p-BBE outcome for any
p ∈ [p̄, 1].

Corollary 7. Fix p ∈ [0, 1]. Let G be a game with strategic complements and positive externalities
with a lowest Nash equilibrium (s1, s2) satisfying s1 < max (Si) for each player i. Let (s∗1, s∗2) be a
p-BBE outcome. Then si ≤ s∗i for each player i.
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Corollary 8. Fix p ∈ [0, 1]. Let G be a game with positive externalities and strategic complements.
Let
((ψ∗1, ψ∗2) , (s∗1, s∗2)) be a p-BBE. If s∗i /∈ {min (Si) ,max (Si)}, then player i exhibits wishful thinking
(i.e., ψ∗i

(
s∗j

)
≥ s∗j ).

One can also adapt the examples of Section 6.2 (and, similarly, the examples of Sections 6.3 and
6.4) to sufficiently high ps.

Adaptation of Section 6.3 (Games With Strategic Substitutes) Minor adaptations to the
proofs of the results of Section 6.3 show that most of these results (namely, part (1) of Proposition
5 and Corollaries 4 and 5) hold for any p ∈ [0, 1], while part (2) of Proposition 5 holds for p-s
sufficiently close to one. Formally:

Proposition 20 (Proposition 5 extended). Let G be a game with strategic substitutes and positive
externalities.

1. Fix p ∈ [0, 1]. Let (s∗1, s∗2) be a p-BBE outcome. Then (s∗1, s∗2) is (I) undominated, and for each
player i: (II) πi

(
s∗i , s

∗
j

)
≥MU

i , and (III) s∗i ≥ min
(
BR

(
s∗j

))
(overinvestment).

2. Let (s∗1, s∗2) be an undominated profile satisfying for each player i: (II’) πi
(
s∗i , s

∗
j

)
> M̃U

i , and

(III) s∗i ≥ min
(
BR

(
s∗j

))
. Then there exists p̄ < 1 such that (s∗1, s∗2) is a p-BBE outcome for

any p ∈ [p̄, 1].
Moreover, if πi (si, sj) is strictly concave then (s∗1, s∗2) is a strong p-BBE outcome for any
p ∈ [p̄, 1].

Corollary 9. Fix p ∈ [0, 1]. Let G be a game with strategic substitutes and positive externalities. Let
(s∗1, s∗2) be a BBE outcome. Then, there exists a Nash equilibrium of the underlying game (se1, se2),
and a player i such that sei ≥ s∗i .

Corollary 10. Fix p ∈ [0, 1]. Let G be a game with strategic substitutes and positive externalities.
Let ((ψ∗1, ψ∗2) , (s∗1, s∗2)) be a p-BBE. If s∗i /∈ {min (Si) ,max (Si)}, then player i exhibits wishful
thinking (i.e., ψ∗i

(
s∗j

)
≥ s∗j ).

Adaptation of Section 6.3 (Games With Strategic Opposites) Minor adaptations to the
proofs of the results of Section 6.3 show that most of these results (namely, part (1) of Proposition
6, and Corollary 6) hold for any p ∈ [0, 1], while part (2) of Proposition 6 holds for p-s sufficiently
close to one. Formally:

Proposition 21. Let G be a game with positive externalities and strategic opposites: ∂π1(s1,s2)
∂s1

> 0
and ∂π2(s1,s2)

∂s1
< 0 for each pair of strategies s1, s2.

1. Fix p ∈ [0, 1]. Let (s∗1, s∗2) be a p-BBE outcome. Then (s∗1, s∗2) is (I) undominated: (II)
πi
(
s∗i , s

∗
j

)
≥ MU

i for each player i, and (III) s∗1 ≤ max (BR (s∗2)) and s∗2 ≥ min (BR (s∗1))
(underinvestment of player 1 and overinvestment of player 2).
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2. Let (s∗1, s∗2) be a profile satisfying: (I) undominated, (II) πi
(
s∗i , s

∗
j

)
> M̃U

i for each player i,
and (III) s∗1 ≤ max (BR (s∗2)) and s∗2 ≥ min (BR (s∗1)). Then there exists p̄ < 1 such that
(s∗1, s∗2) is a p-BBE outcome for any p ∈ [p̄, 1].

Corollary 11. Fix p ∈ [0, 1]. Let ((ψ∗1, ψ∗2) , (s∗1, s∗2)) be a p-BBE of a game with positive externalities
and strategic opposites (i.e., ∂π1(s1,s2)

∂s1
> 0 and ∂π2(s1,s2)

∂s1
< 0 for each pair of strategies s1, s2). If

s∗i /∈ {min (Si) ,max (Si)}, then player i exhibits pessimism (i.e., ψ∗i
(
s∗j

)
≤ s∗j ).

E.3.3 Adaptation of Section 7 (Additional Results)

Adaptation of Section 7.1 (BBE with Strategic Stubbornness) In what follows we show
how to extend Example 5 to the setup of partial observability (while we leave the extension of the
general result, Proposition 7, to future research). The example focuses on Cournot competition. We
show that for each level of partial observability p ∈ [0, 1], there exists a strong BBE in which one
of the players (1) has a blind belief and (2) plays a strategy that is between the Nash equilibrium
strategy and the Stackelberg strategy (and the closer it is to the Stackelberg strategy, the higher
the value of p), while the opponent has undistorted beliefs. The first player’s (resp., opponent’s)
payoff is strictly increasing (resp., decreasing) in p: it converges to the Nash equilibrium payoff when
p→ 0, and it converges to the Stackelberg leader’s (resp., follower’s) payoff when p→ 1.

Example 15 (Example 5 revisited). Consider the symmetric Cournot game with linear demand:
G = (S, π): Si = R+ and πi (si, sj) = si · (1− si − sj) for each player i. Let p ∈ [0, 1] be the
observation probability. Then ((1− p

3− p, Id
)
,

( 1
3− p,

2− p
2 · (3− p)

))

is a strong BBE that yields a payoff of 2−p
2·(3−p) to player 1, and yields a payoff of

(
2−p

2·(3−p)

)2
to player

2. Observe that player 1’s payoff is increasing in p, and it converges to the Nash equilibrium (resp.,
Stackelberg leader’s) payoff of 1

9 (1
8) when p → 0 (p → 1). Further observe that player 2’s payoff

is decreasing in p, and it converges to the Nash equilibrium (resp., Stackelberg follower’s) payoff
of 1

9 ( 1
16) when p → 0 (p → 1). The argument that

((
1−p
3−p , Id

)
,
(

1
3−p ,

2−p
2·(3−p)

))
is a strong BBE is

sketched as follows: (1)
{(

1
3−p ,

2−p
2·(3−p)

)}
= NE

(
G( 1−p

3−p ,Id
)) (because 1

3−p is the unique best reply

against 1−p
3−p and 2−p

2·(3−p) is the unique best reply against 1
3−p) ; (2) for any biased belief ψ′2, player 1

keeps playing 1
3−p due to having a blind belief, and as a result player 2’s payoff is at most

(
2−p

2·(3−p)

)2
;

and (3) for any biased belief ψ′1 inducing a deviating player 1 to play strategy x, player 2 plays 1−x
2

(the unique best reply against x) with probability p (when observing the deviation), and player 2
plays 2−p

2·(3−p) (the original configuration strategy) with the remaining probability of 1− p. Thus, the
payoff of a deviating player 1 who deviates into playing strategy x is

π (x) := p ·x ·
(1− x

2

)
+(1− p) ·x ·

(
1− x− 2− p

2 · (3− p)

)
=
(

1− p

2

)
·x ·(1− x)− (2− p) · (1− p)

2 · (3− p) ·x,

where this payoff function π (x) is strictly concave in x with a unique maximum at x = 1
3−p (the
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unique solution to the FOC 0 = ∂π
∂x =

(
1− p

2
)
· (1− 2 · x)− (2−p)·(1−p)

2·(3−p) ).

Extending the Folk Theorem Results for Sufficiently High p-s The main results of Section
7.2, show folk theorem results for: (1) monotone BBE in games that admit best replies with full
undominated support, and (2) strong BBE in interval games with a payoff function that is strictly
concave in the agent’s strategy, and weakly convex in the opponent’s strategy. Minor adaptations
of each proof can show that each result can be extended to p-s that are sufficiently close to one.
Formally:

Proposition 22 (Proposition 8 extended). Let G be a finite game that admits best replies with full
undominated support. Let (s∗1, s∗2) be an undominated strategy profile that induces for each player a
payoff above his minmax payoff (i.e., πi (s∗1, s∗2) > MU

i ∀i ∈ {1, 2}). Then there exists p̄ < 1, such
that (s∗1, s∗2) is a monotone weak p-BBE outcome for each p ∈ [p̄, 1].

Proposition 23 (Proposition 9 extended). Let G = (S, π) be an interval game. Assume that for
each player i, πi (si, sj) is strictly concave in si and weakly convex in sj. If (s∗1, s∗2) is undominated
and πi (s∗1, s∗2) > MU

i for each player i, then there exists p̄ < 1, such that (s∗1, s∗2) is a strong p-BBE
outcome for each p ∈ [p̄, 1].

Sketch of adapting the proofs of Propositions 22 and 23 to the setup of partial observability. Observe
that the gain of an agent who deviates to a different biased belief, when his deviation is unobserved
by the opponent, is bounded (due to the payoff of the underlying game being bounded). When the
deviation is observed by the opponent, the agent is strictly outperformed, given the BBE constructed
in the proofs of Propositions 8 and 9. This implies that there exists p̄ < 1 sufficiently close to one,
such that the loss of a mutant when being observed by his opponent outweighs the mutant’s gain
when being unobserved for any p ∈ [p̄, 1].

F Proofs

F.1 Proof of Proposition 4

Part 1: Proposition 3 implies (I) and (II). It remains to show (III, overinvestment). Let
((
ψ∗i , ψ

∗
j

)
,(

s∗i , s
∗
j

))
be a BBE. Assume to the contrary that s∗i < min

(
BR

(
s∗j

))
. Consider a deviation of

player i to a blind belief that the opponent always plays strategy s∗j (i.e., ψ′i ≡ s∗j ). Let
(
s′i, s

′
j

)
∈

PNE

(
G(ψ′i,ψ∗j )

)
be a plausible equilibrium of the new biased game. Observe first that s′i ∈

BR
(
ψ′i

(
s′j

))
= BR

(
s∗j

)
. This implies that s′i > s∗i , and, thus, due to the monotonicity of ψ∗j

we have: ψ∗j (s′i) ≥ ψ∗j (s∗i ). We consider two cases:

1. If ψ∗j (s′i) > ψ∗j (s∗i ), then the strategic complementarity implies that s′j ≥ min
(
BR

(
ψ∗j (s′i)

))
≥

max
(
BR

(
ψ∗j (s∗i )

))
≥ s∗j , and this, in turn, implies that player i strictly gains from his devi-

ation: πi
(
s′i, s

′
j

)
≥ πi

(
s′i, s

∗
j

)
> πi

(
s∗i , s

∗
j

)
, a contradiction.
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2. If ψ∗j (s′i) = ψ∗j (s∗i ), then
(
s′i, s

∗
j

)
∈ PNE

(
G(ψ′i,ψ∗j )

)
and πi

(
s′i, s

∗
j

)
> πi

(
s∗i , s

∗
j

)
, which

contradicts that
((
ψ∗i , ψ

∗
j

)
,
(
s∗i , s

∗
j

))
is a BBE.

Part 2: Assume that strategy profile (s∗1, s∗2) satisfies I, II, and III. For each player i let sei =
min

(
BR−1 (s∗i )

)
. For every player i and every strategy si < s∗i define X (si) as the set of strategies

s′i for which player i is worse off (relative to πi (s∗1, s∗2)) if he plays strategy si, while player j plays
a best-reply to s′i. Formally:

Xs∗ (si) =
{
s′i ∈ Si|πi (si, sj) ≤ πi

(
s∗i , s

∗
j

)
∀sj ∈ BR

(
s′i
)}
.

The assumption that πi
(
s∗i , s

∗
j

)
> M̃U

i implies that Xs∗ (si) is nonempty for each si. The as-
sumption of strategic complements implies that Xs∗ (si) is an interval starting at min (Si). Let
φs∗ (si) = sup (Xs∗ (si)). The assumption that the payoff function is continuously twice differen-
tiable implies that φs∗ (si) is continuous. The assumption that sej = min

(
BR−1 (s∗i )

)
implies that

limsi↗s∗i (φs∗ (si)) = sei . These observations imply that for each player j there exists a monotone
biased belief ψ∗j satisfying (1) ψ∗j (si) = sei for each si ≥ s∗i and (2) ψ∗j (si) ≤ φs∗ (si) for each si < s∗i
with an equality only if φs∗ (si) = min (Si).

We now show that these properties of (ψ∗1, ψ∗2) imply that ((ψ∗1, ψ∗2) , (s∗1, s∗2)) is a BBE (a strong
BBE if πi (si, sj) is strictly concave in si). Consider a deviation of player i into an arbitrary biased

belief ψ′i. For each s′i ≥ s∗i , and each
(
s′i, s

′
j

)
∈ PNE

(
G(ψ′i,ψ∗j )

)
(
(
s′i, s

′
j

)
∈ NE

(
G(ψ′i,ψ∗j )

)
), the

fact that ψ∗j (s′i) = ψ∗j (s∗i ) implies that s′j = s∗j , and due to assumption (III) of overinvestment and
the concavity of the payoff function: πi

(
s′i, s

′
j

)
= πi

(
s′i, s

∗
j

)
≤ πi

(
s∗i , s

∗
j

)
. For each s′i < s∗i , and each(

s′i, s
′
j

)
∈ NE

(
G(ψ′i,ψ∗j )

)
, the fact that ψ∗j (s′i) ≤ φs∗ (s′i) with an equality only if φs∗ (s′i) = min (Si)

(and, thus, ψ∗j (s′i) ∈ Xs∗ (s′i)) implies that πi
(
s′i, s

′
j

)
≤ πi (s∗1, s∗2). This shows that player i cannot

gain from his deviation, which implies that ((ψ∗1, ψ∗2) , (s∗1, s∗2)) is a (strong) BBE.

F.2 Proof of a Lemma Required for Corollary 2

Lemma 1. Let G be a game with strategic complements and positive externalities with a lowest
Nash equilibrium (s1, s2) satisfying si < max (Si)i for each player i. Let s∗1 < s1. Then for each
s∗2 ∈ S2 either (1) s∗1 < min (BR (s∗2)) or (2) s∗2 < min (BR (s∗1)).

Proof. Assume first that s∗2 > s2. The fact that s1 ∈ BR (s2) and s∗2 > s2, together with the strategic
complements, imply that s∗1 < s1 < min (BR (s∗2)). We are left with the case where s∗2 ≤ s2. Consider
a restricted game in which the set of strategies of each player i is restricted to being strategies that
are at most s∗i . The game is a game of strategic complements, and, thus, it admits a pure Nash
equilibrium

(
s′i, s

′
j

)
. The minimality of (s1, s2) implies that

(
s′i, s

′
j

)
cannot be a Nash equilibrium

of the unrestricted game. The strategic complements and the concavity of the payoff jointly imply
that if

(
s′i, s

′
j

)
is not a Nash equilibrium of the unrestricted game, then there is player i for which

s∗i = s′i < min
(
BR

(
s′j

))
≤ min

(
BR

(
s∗j

))
.
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F.3 Proof of a Lemma Required for Corollary 3

Lemma 2. Let G be a game with positive externalities and strategic complementarity of the payoff
of player i (i.e., ∂2πi(si,sj)

∂si·∂sj > 0 for each si, sj). Then s′j < sj implies that max
(
BR

(
s′j

))
≤

min (BR (sj)) with an equality only if max
(
BR

(
s′j

))
= min (BR (sj)) ∈ {min (Si) ,max (Si)}.

Proof. The inequality s′j < sj and the strategic complementarity of the payoff of player i im-

plies that ∂πi(si,s′j)
∂si

<
∂πi(si,sj)

∂si
for each si ∈ Si, which implies that whenever max

(
BR

(
s′j

))
/∈

{min (Si) ,max (Si)}, then

max
(
BR

(
s′j

))
= max

s∗i ∈ Si|
∂πi

(
si, s

′
j

)
∂si

= 0

∣∣∣∣∣∣
si=s∗i


< min

{
s∗i ∈ Si|

∂πi (si, sj)
∂si

= 0
∣∣∣∣
si=s∗i

}
≤ min (BR (sj)) .

This shows that the strict inequality holds whenever max
(
BR

(
s′j

))
/∈ {min (Si) ,max (Si)}. It

remains to show that the weak inequality (namely, max
(
BR

(
s′j

))
≤ min (BR (sj))) holds when

max
(
BR

(
s′j

))
∈ {min (Si) ,max (Si)}. If max

(
BR

(
s′j

))
= min (Si) then this is immediate. As-

sume that max
(
BR

(
s′j

))
= max (Si). Then:

max (Si) = max

s∗i ∈ Si|
∂πi

(
si, s

′
j

)
∂si

≥ 0

∣∣∣∣∣∣
si=s∗i

 .
≤ min

{
s∗i ∈ Si|

∂πi (si, sj)
∂si

≥ 0
∣∣∣∣
si=s∗i

}
≤ min (BR (sj)) .

F.4 Proof of Proposition 5

The proof is analogous to the proof of Proposition 4, and is presented for completeness.
Part 1: Proposition 3 implies (I) and (II). It remains to show (III) (underinvestment). Let((
ψ∗i , ψ

∗
j

)
,
(
s∗i , s

∗
j

))
be a BBE. Assume to the contrary that s∗i > max

(
BR

(
s∗j

))
. Consider a

deviation of player i to a blind belief that the opponent always plays strategy s∗j (i.e., ψ′i ≡ s∗j ). Let(
s′i, s

′
j

)
∈ PNE

(
G(ψ′i,ψ∗j )

)
be a plausible equilibrium of the new biased game. Observe first that

s′i ∈ BR
(
ψ′i

(
s′j

))
= BR

(
s∗j

)
. This implies that s′i < s∗i , and, thus, due to the monotonicity of ψ∗j

we have: ψ∗j (s′i) ≤ ψ∗j (s∗i ). We consider two cases:

1. If ψ∗j (s′i) < ψ∗j (s∗i ), then the strategic substitutability implies that s′j ≥ min
(
BR

(
ψ∗j (s′i)

))
≥

max
(
BR

(
ψ∗j (s∗i )

))
≥ s∗j , and this, in turn, implies that player i strictly gains from his

deviation: πi
(
s′i, s

′
j

)
≥ πi

(
s′i, s

∗
j

)
> πi

(
s∗i , s

∗
j

)
, a contradiction.
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2. If ψ∗j (s′i) = ψ∗j (s∗i ), then
(
s′i, s

∗
j

)
∈ PNE

(
G(ψ′i,ψ∗j )

)
and πi

(
s′i, s

∗
j

)
> πi

(
s∗i , s

∗
j

)
, which

contradicts that
((
ψ∗i , ψ

∗
j

)
,
(
s∗i , s

∗
j

))
is a BBE.

Part 2: Assume that strategy profile (s∗1, s∗2) satisfies I, II, and III. For each player i let sei =
max

(
BR−1 (s∗i )

)
. For each player i and each strategy si > s∗i define X (si) as the set of strategies

s′i for which player i is worse off (relative to πi (s∗1, s∗2)) if he plays strategy si, while player j plays
a best-reply to s′i. Formally:

Xs∗ (si) =
{
s′i ∈ Si|πi (si, sj) ≤ πi

(
s∗i , s

∗
j

)
∀sj ∈ BR

(
s′i
)}
.

The assumption that πi
(
s∗i , s

∗
j

)
> M̃U

i implies that Xs∗ (si) is nonempty for each si. The as-
sumption of strategic substitutes implies that Xs∗ (si) is an interval ending at max (Si). Let
φs∗ (si) = inf (Xs∗ (si)). The assumption that the payoff function is continuously twice differen-
tiable implies that φs∗ (si) is continuous. The assumption that sej = max

(
BR−1 (s∗i )

)
implies that

limsi↘s∗i (φs∗ (si)) = sei . These observations imply that for each player j there exists a monotone
biased belief ψ∗j satisfying (1) ψ∗j (si) = sei for each si ≤ s∗i and (2) ψ∗j (si) ≥ φs∗ (si) for each si > s∗i
with an equality only if φs∗ (si) = max (Si).

We now show that these properties of (ψ∗1, ψ∗2) imply that ((ψ∗1, ψ∗2) , (s∗1, s∗2)) is a BBE (a strong
BBE if πi (si, sj) is strictly concave in si). Consider a deviation of player i to an arbitrary biased

belief ψ′i. For each s′i ≤ s∗i , and each
(
s′i, s

′
j

)
∈ PNE

(
G(ψ′i,ψ∗j )

)
(
(
s′i, s

′
j

)
∈ NE

(
G(ψ′i,ψ∗j )

)
), the

fact that ψ∗j (s′i) = ψ∗j (s∗i ) implies that s′j = s∗j and, due to assumption (III) of underinvestment and
the concavity of the payoff function, it follows that πi

(
s′i, s

′
j

)
= πi

(
s′i, s

∗
j

)
≤ πi

(
s∗i , s

∗
j

)
. For each

s′i > s∗i , and each
(
s′i, s

′
j

)
∈ NE

(
G(ψ′i,ψ∗j )

)
, the fact that ψ∗j (s′i) ≥ φs∗ (s′i) with an equality only if

φs∗ (si) = max (Si) (and, thus, ψ∗j (s′i) ∈ Xs∗ (s′i)) implies that πi
(
s′i, s

′
j

)
≤ πi (s∗1, s∗2). This shows

that player i cannot gain from his deviation, which implies that ((ψ∗1, ψ∗2) , (s∗1, s∗2)) is a (strong)
BBE.

F.5 Proof of a Lemma Required for Corollary 4

Lemma 3. Let G be a game with strategic substitutes and positive externalities. Let (s∗1, s∗2) be a stra-
tegy profile satisfying s∗i > sei for each player i and each Nash equilibrium (se1, se2) ∈ NE (G).Then,
either (1) s∗1 > max (BR (s∗2)) or (2) s∗2 > max (BR (s∗1)).

Proof. Consider a restricted game in which the set of strategies of each player i is restricted to being
strategies that are at least s∗i . The restricted game is a game with strategic substitutes, and, thus,
it admits a pure Nash equilibrium (s′1, s′2) (recall, that after relabeling the set of strategies of one
of the players, the game becomes supermodular, and because of this the game admits a pure Nash
equilibrium due to Milgrom and Roberts, 1990). The assumption that s∗i > sei for each player i
and each Nash equilibrium (se1, se2) ∈ NE (G) implies that (s′1, s′2) cannot be a Nash equilibrium of
the unrestricted game. The concavity of the payoff and the strategic substitutes jointly imply that
if
(
s′i, s

′
j

)
is not a Nash equilibrium of the unrestricted game, then there is a player i for which

s∗i = s′i > max
(
BR

(
s′j

))
≥ max

(
BR

(
s∗j

))
.
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F.6 Proof of Corollary 5

The proof is analogous to Corollary 3, and is presented for completeness. Assume to the contrary
that ψ∗i

(
s∗j

)
< s∗j . Lemma 4 (below) implies that min

(
BR

(
ψ∗i

(
s∗j

)))
≥ max

(
BR

(
s∗j

))
with an

equality only if
min

(
BR

(
ψ∗i

(
s∗j

)))
∈ {min (Si) ,max (Si)} .

Part 1 of Proposition 5 and the definition of a monotone BBE imply that

min
(
BR

(
ψ∗i

(
s∗j

)))
≤ s∗i ≤ max

(
BR

(
s∗j

))
.

The previous inequalities jointly imply that

min
(
BR

(
ψ∗i

(
s∗j

)))
= s∗i = max

(
BR

(
s∗j

))
∈ {min (Si) ,max (Si)} ,

which contradicts the assumption that s∗i /∈ {min (Si) ,max (Si)}.

Lemma 4. Let G be a game with positive externalities and strategic substitutability of the payoff
of player i (i.e., ∂2πi(si,sj)

∂si·∂sj > 0 for each si, sj). Then s′j < sj implies that min
(
BR

(
s′j

))
≥

max (BR (sj)) with an equality only if min
(
BR

(
s′j

))
= min (BR (sj)) ∈ {min (Si) ,max (Si)}.

Proof. The proof is analogous to the proof of Lemma 1, and is presented for completeness. The
inequality s′j < sj and the strategic substitutability of the payoff of player i implies that ∂πi(si,s′j)

∂si
>

∂πi(si,sj)
∂si

for each si ∈ Si, which implies that whenever min
(
BR

(
s′j

))
/∈ {min (Si) ,max (Si)}, then

min
(
BR

(
s′j

))
= min

s∗i ∈ Si|
∂πi

(
si, s

′
j

)
∂si

= 0

∣∣∣∣∣∣
si=s∗i


> max

{
s∗i ∈ Si|

∂πi (si, sj)
∂si

= 0
∣∣∣∣
si=s∗i

}
= max (BR (sj)) .

This shows that the strict inequality holds whenever min
(
BR

(
s′j

))
/∈ {min (Si) ,max (Si)}. It

remains to show that the weak inequality (namely, min
(
BR

(
s′j

))
≥ max (BR (sj))) holds when

min
(
BR

(
s′j

))
∈ {min (Si) ,max (Si)}. If min

(
BR

(
s′j

))
= max (Si) then this is immediate. As-

sume that min
(
BR

(
s′j

))
= min (Si). Then:

min (Si) = min

s∗i ∈ Si|
∂πi

(
si, s

′
j

)
∂si

≥ 0

∣∣∣∣∣∣
si=s∗i


≥ max

{
s∗i ∈ Si|

∂πi (si, sj)
∂si

≥ 0
∣∣∣∣
si=s∗i

}
≥ max (BR (sj)) .
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F.7 Proof of Proposition 6

The proof is analogous to the proof of Proposition 4, and is presented for completeness.
Part 1: Proposition 3 implies (I) and (II). It remains to show (III). Let ((ψ∗1, ψ∗2) , (s∗1, s∗2))

be a BBE. We begin by showing overinvestment of player 2. Assume to the contrary that s∗2 <

min
(
BR

(
s∗j

))
. Consider a deviation of player 2 to a blind belief that the opponent always plays

strategy s∗1 (i.e., ψ′2 ≡ s∗1). Let (s′1, s′2) ∈ PNE
(
G(ψ∗1 ,ψ′2)

)
be a plausible equilibrium of the new

biased game. Observe first that s′2 ∈ BR (ψ′2 (s′1)) = BR (s∗1) . This implies that s′2 > s∗2, and, thus,
due to the monotonicity of ψ∗1, we have : ψ∗1 (s′2) ≥ ψ∗1 (s∗2). We consider two cases:

1. If ψ∗1 (s′2) > ψ∗1 (s∗2), then the strategic complementarity of player 1’s payoff implies that s′1 ≥
min (BR (ψ∗1 (s′2))) ≥ max (BR (ψ∗1 (s∗2))) ≥ s∗1, and, this, in turn, implies that player 2 strictly
gains from his deviation: π2 (s′1, s′2) ≥ π2 (s′1, s∗2) > π2 (s∗1, s∗2), a contradiction.

2. If ψ∗1 (s′2) = ψ∗1 (s∗2), then (s∗1, s′2) ∈ PNE
(
G(ψ∗1 ,ψ′2)

)
and π2 (s∗1, s′2) > π2 (s∗1, s∗2), which con-

tradicts that ((ψ∗1, ψ∗2) , (s∗1, s∗2)) is a BBE.

Next we show underinvestment of player 1. Assume to the contrary that s∗1 > max (BR (s∗2)).
Consider a deviation of player 1 to a blind belief that the opponent always plays strategy s∗2 (i.e.,
ψ′1 ≡ s∗2). Let (s′1, s′2) ∈ PNE

(
G(ψ′1,ψ∗2)

)
be a plausible equilibrium of the new biased game. Observe

first that s′1 ∈ BR (ψ′1 (s′2)) = BR (s∗2) . This implies that s′1 < s∗2 and, thus, due to the monotonicity
of ψ∗2, we have: ψ∗2 (s′1) ≤ ψ∗2 (s∗1). We consider two cases:

1. If ψ∗2 (s′1) < ψ∗2 (s∗1), then the strategic substitutability of player 2’s payoff implies that s′2 ≥
min (BR (ψ∗2 (s′1))) ≥ max (BR (ψ∗2 (s∗1))) ≥ s∗2, and this, in turn, implies that player 1 strictly
gains from his deviation: π1 (s′1, s′2) ≥ π1 (s′1, s∗2) > π1 (s∗1, s∗2), a contradiction.

2. If ψ∗2 (s′1) = ψ∗2 (s∗1), then (s′1, s∗2) ∈ PNE
(
G(ψ′1,ψ∗2)

)
and π1 (s′1, s∗2) > π1 (s∗1, s∗2), which con-

tradicts that ((ψ∗1, ψ∗2) , (s∗1, s∗2)) is a BBE.

Part 2: Assume that strategy profile (s∗1, s∗2) satisfies I, II, and III. Let se1 = min
(
BR−1 (s∗2)

)
. For

each strategy s2 < s∗2 define X (s2) as the set of strategies s′2 for which player 2 is worse off (relative
to π2 (s∗1, s∗2)) if he plays strategy s2, while player 1 plays a best-reply to s′2. Formally:

Xs∗ (s2) =
{
s′2 ∈ S2|π2 (s1, s2) ≤ π2

(
s∗i , s

∗
j

)
∀s1 ∈ BR

(
s′2
)}
.

The assumption that π2 (s∗1, s∗2) > M̃U
2 implies that Xs∗ (s2) is nonempty for each s2 ∈ S2. The

assumption of strategic complements of player 1’s payoff implies that Xs∗ (s2) is an interval starting
at min (S2). Let φs∗ (s2) = sup (Xs∗ (s2)). The assumption that the payoff function is continuously
twice differentiable implies that φs∗ (s2) is continuous. The assumption that se1 = min

(
BR−1 (s∗2)

)
implies that lims2↗s∗2 (φs∗ (s2)) = se2. These observations imply that there exists a monotone biased
belief ψ∗1 satisfying (1) ψ∗1 (s2) = se1 and (2) ψ∗1 (s2) ≤ φs∗ (s2) for each s2 < s∗2 with an equality only
if φs∗ (s2) = min (S2).

Let se2 = max
(
BR−1 (s∗1)

)
. For each strategy s1 > s∗1 define X (s1) as the set of strategies

s′1 ∈ S1 for which player 1 is worse off (relative to π2 (s∗1, s∗2)) if he plays strategy s1, while player 2
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plays a best-reply to s′1. Formally:

Xs∗ (s2) =
{
s′1 ∈ S1|π2 (s1, s2) ≤ π2 (s∗1, s∗2) ∀s1 ∈ BR

(
s′2
)}
.

The assumption that π1 (s∗1, s∗2) > M̃U
1 implies that Xs∗ (s1) is nonempty for each s1 ∈ S1. The

assumption of strategic substitutes of player 2’s payoff implies that Xs∗ (s1) is an interval ending
at max (S1). Let φs∗ (s1) = inf (Xs∗ (s1)). The assumption that the payoff function is continuously
twice differentiable implies that φs∗ (s1) is continuous. The assumption that se2 = max

(
BR−1 (s∗1)

)
implies that lims1↘s∗1 (φs∗ (s1)) = se1. These observations imply that there exists a monotone biased
belief ψ∗2 satisfying (1) ψ∗2 (s1) = se1 and (2) ψ∗2 (s1) ≥ φs∗ (s1) for each s1 > s∗1 with an equality only
if φs∗ (s1) = max (S1).

We now show that these properties of (ψ∗1, ψ∗2) imply that ((ψ∗1, ψ∗2) , (s∗1, s∗2)) is a BBE. Consider
a deviation of player 2 into an arbitrary biased belief ψ′2. For each s′2 ≥ s∗2, and each (s′1, s′2) ∈
PNE

(
G(ψ∗1 ,ψ′2)

)
, the fact that ψ∗1 (s′2) = ψ∗1 (s∗2) implies that s′1 = s∗1, and due to assumption (III)

of the overinvestment of player 2 and the concavity of the payoff function, we have π2 (s′1, s′2) =
π2 (s′1, s∗2) ≤ π2 (s∗1, s∗2). For each s′2 < s∗2, and each (s′1, s′2) ∈ NE

(
G(ψ∗1 ,ψ′2)

)
, the fact that ψ∗1 (s′2) ≤

φs∗ (s′2) with an equality only if φs∗ (s′2) = min (S2) implies that π2 (s′1, s′2) ≤ π2 (s∗1, s∗2). This shows
that player 2 cannot gain from his deviation.

Finally, consider a deviation of player 1 to an arbitrary biased belief ψ′1. For each s′1 ≤
s∗1, and each (s′1, s′2) ∈ PNE

(
G(ψ′1,ψ∗2)

)
, the fact that ψ∗2 (s′1) = ψ∗2 (s∗1) implies that s′2 = s∗2,

and due to assumption (III) of the underinvestment of player 1 and the concavity of the payoff
function, we have π1 (s′1, s′1) = π1 (s′1, s∗3) ≤ π1 (s∗1, s∗3). For each s′1 > s∗1, and each (s′1, s′3) ∈
NE

(
G(ψ′1,ψ∗2)

)
, the fact that ψ∗2 (s′1) ≥ φs∗ (s′1) with an equality only if φs∗ (s1) = max (S1) implies

that π1 (s′1, s′2) ≤ π1 (s∗1, s∗2). This shows that player 1 cannot gain from his deviation, which implies
that ((ψ∗1, ψ∗2) , (s∗1, s∗2)) is a BBE.

F.8 Proof of Corollary 6 (Pessimism in Games with Strategic Opposites)

The proof is analogous to the proof of Corollary 3, and is presented for completeness.
Assume to the contrary that ψ∗i

(
s∗j

)
> s∗j for some player i. Assume first that ψ∗2 (s∗1) > s∗1; then

Lemma 4 implies that max (BR (ψ∗2 (s∗1))) ≤ min (BR (s∗1)) with an equality only if

max (BR (ψ∗2 (s∗1))) ∈ {min (S2) ,max (S2)} .

Part 1 of Proposition 6 and the definition of a monotone BBE imply that

max (BR (ψ∗2 (s∗1))) ≥ s∗2 ≥ min (BR (s∗1)) .

The previous inequalities jointly imply that

max (BR (ψ∗2 (s∗1))) = s∗2 = min (BR (s∗1)) ∈ {min (S2) ,max (S2)} ,

which contradicts the assumption that s∗2 /∈ {min (S2) ,max (S2)}.
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We are left with the case of ψ∗1 (s∗2) > s∗2; then Lemma 2 implies that min (BR (ψ∗1 (s∗2))) ≥
max (BR (s∗2)) with an equality only if

min (BR (ψ∗1 (s∗2))) ∈ {min (S1) ,max (S1)} .

Part 1 of Proposition 6 and the definition of a monotone BBE imply that

min (BR (ψ∗1 (s∗2))) ≤ s∗1 ≤ max (BR (s∗2)) .

The previous inequalities jointly imply that

min (BR (ψ∗1 (s∗2))) = s∗1 = max (BR (s∗2)) . ∈ {min (S1) ,max (S1)} ,

which contradicts the assumption that s∗1 /∈ {min (S1) ,max (S1)}.

F.9 Proof of Proposition 9

Recall that we assume the payoff function πi to be continuously twice differentiable. This implies
that πi is Lipschitz continuous. Let Ki > 0 be the Lipschitz constant of the payoff function πi with
respect to its first parameter, i.e., Ki satisfies

∥∥πi (s1, s2)− πi
(
s′1, s2

)∥∥ ≤ Ki ·
∥∥s1 − s′1

∥∥ .
Assume that (s∗1, s∗2) is undominated and πi (s∗1, s∗2) > MU

i for each player i. Let 0 < Di = πi (s∗1, s∗2)−
MU
i . For each player j, let spj be an undominated strategy that guarantees that player i obtains, at

most, his minmax payoff MU
i , i.e., spj = argminsj∈SUj (maxsi∈Si πi (si, sj)) . The strict concavity of

πi (si, sj) with respect to si implies that the best-reply correspondence is a continuous one-to-one
function. Thus, BR−1 (si) is a singleton for each si, and we identify BR−1 (si) with the unique
element in this singleton set.

Let ε > 0 be a sufficiently small number satisfying ε < min
(
Di
Ki
,
Dj
Kj

)
. For each δ ∈ [0, 1] define

for each player i:
sδi = ε− δ

ε
· s∗i + δ

ε
· spi .

Let ψεi be defined as follows:

ψεi

(
s′j

)
=


BR−1

(
s
|s′j−sj|
i

) ∣∣∣s′j − sj∣∣∣ < ε

BR−1 (spi )
∣∣∣s′j − sj∣∣∣ ≥ ε.

Note that ψεi is continuous. We now show that ((ψε1, ψε2) , (s∗1, s∗2)) is a strong BBE. Observe first
that the definition of (ψε1, ψε2) immediately implies that (s∗1, s∗2) ∈ NE

(
G(ψε1,ψε2)

)
. Next, consider a

deviation of player i to an arbitrary biased belief ψ′i. Consider any equilibrium of the new biased
game

(
s′i, s

′
j

)
∈ NE

(
G(ψ′i,ψεj)

)
. If |s′i − si| ≥ ε, then the definition of ψεj (s′i) implies that spj = s′j ,

and that player i achieves a payoff of at most MU
i < πi (s∗1, s∗2). If s′i = s∗i , then it is immediate that
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s′j = s∗j and that player i does not gain from his deviation. If 0 < |s′i − si| < ε, then the definition
of ψεj (s′i) implies that

πi
(
s′i, s

′
j

)
= πi

(
s′i, s
|s′i−si|
j

)
= πi

(
s′i,

ε− |s′i − si|
ε

· s∗j + |s
′
i − si|
ε

· spj
)
≤

ε− |s′i − si|
ε

· πi
(
s′i, s

∗
j

)
+ |s

′
i − si|
ε

· πi
(
s′i, s

p
j

)
≤ ε− |s′i − si|

ε
· πi

(
s′i, s

∗
j

)
+ |s

′
i − si|
ε

·MU
i ≤

ε− |s′i − si|
ε

· πi
(
s∗i, s

∗
j

)
+Ki ·

∣∣s′i − si∣∣+ |s′i − si|ε
·MU

i =

ε− |s′i − si|
ε

· πi
(
s∗i, s

∗
j

)
+Ki ·

∣∣s′i − si∣∣+ |s′i − si|ε
·
(
πi
(
s∗i, s

∗
j

)
−Di

)
=

πi
(
s∗i, s

∗
j

)
+ ε− |s′i − si|

ε
·Ki ·

∣∣s′i − si∣∣− |s′i − si|ε
·Di ≤ πi

(
s∗i, s

∗
j

)
+Ki ·

∣∣s′i − si∣∣− |s′i − si|ε
·Di =

πi
(
s∗i, s

∗
j

)
+
∣∣s′i − si∣∣ · (Ki −

Di

ε

)
< πi

(
s∗i, s

∗
j

)
,

where the first inequality is due to the convexity of πi (si, sj) with respect to sj , the second inequality
is due to πi

(
s′i, s

p
j

)
≤ MU

i , the third inequality is due to the Lipschitz continuity, the penultimate

inequality is implied by ε−|s′i−si|
ε < 1, and the last inequality is due to defining ε to satisfy ε <

min
(
Di
Ki
,
Dj
Kj

)
. This proves that player i cannot gain from his deviation, and that ((ψε1, ψε2) , (s1, s2))

is a strong BBE.
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