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Abstract

Can incorporating expectations-based-reference-dependence (EBRD) considera-

tions help reduce seemingly dominated choices in the Deferred Acceptance mecha-

nism? We run an experiment (N = 500) where each participant is randomly assigned

into one of four different variants of Deferred Acceptance—{static vs. dynamic} ×
{student proposing vs. student receiving}—and play ten different problems of a simu-

lated school-assignment game under a large-market assumption. While a standard,

reference-independent model predicts the same straightforward behavior across the

ten problems and the four variants, an EBRD model predicts stark differences in

behavior across variants and problems.

We find, as predicted by the EBRD model, that (i) across matching problems, devia-

tions from straightforward behavior increase with the competitiveness of the setting;

(ii) across variants, dynamic student receiving leads to significantly fewer deviations;

and (iii) across both matching problems and variants, differences in payoff-relevant

deviations are small (often non-detectable in our data).
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A growing body of empirical evidence documents puzzling behavior in strategyproof

matching mechanisms: many participants play seemingly dominated strategies, both in

real, large-stakes applications and controlled lab experiments. A prominent example

of this behavior is documented in centralized clearinghouses that use rank-order lists

(ROLs) submitted by schools and students to match them together based on the deferred-

acceptance algorithm (DA; Gale and Shapley 1962). Even though the mechanism is

strategyproof for students, i.e., submitting a straightforward (“truthful”) ranking of

schools is a weakly dominant strategy, a nontrivial share of supposedly informed students

who participate in real-world matches appear to make dominated choices. For example,

evidence from different countries shows that students do not rank a school program with

funding above the same program without the funding; early field evidence includes Shorrer

and Sóvágó (2017) from Hungary and Hassidim et al. (2021) from Israel. Similarly, in

simple allocation experiments, a substantial fraction of participants rank smaller amounts

of money above larger ones; see Rees-Jones and Skowronek (2018) for the first lab-in-the-

field evidence from the US, and Hakimov and Kübler (2020) for a recent survey of lab

evidence.

Recently, Dreyfuss et al. (forthcoming) and Meisner and von Wangenheim (2019)

showed that expectations-based reference dependence (EBRD; also referred to as EBLA,

for expectations-based loss aversion) could potentially explain such non-straightforward

behavior. Intuitively, participants with EBRD preferences may intentionally downrank (or,

in some cases, completely omit) a high-value, low-probability school to avert the likely

disappointment from rejection. Both papers show how an EBRD model, as formulated by

Kőszegi and Rabin (2006, 2007, 2009), is consistent with various empirical patterns from

the lab and the field. The first paper also structurally analyzes existing lab data from Li

(2017) and shows that the EBRD model indeed fits the data significantly better than the

classical, reference-independent-preferences benchmark.

In this paper we ask: Is there a DA implementation that induces straightforward

behavior even when students are loss averse? This question is both theoretically important

and has practical, real-world implications.

To answer this question, we study, both theoretically and empirically, the potential role

of EBRD in four different variants of DA. Summarized in table 1, we analyze the predicted

effect of varying two features of DA: (i) static (normal-form) versus dynamic (extensive-

form) implementation, and (ii) student-proposing versus student-receiving role designation.

In the industry-standard DA variant, Static student Proposing (SP), students propose to
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Table 1: Four Deferred Acceptance Variants

Static: Submit Dynamic: Decide
list in advance at each step

Proposing: Students apply to schools, schools retain the
highest-ranked applications.

SP DP

Receiving: Schools send admission offers to students by
ranking, students can retain at most one offer in each step.

SR DR

schools in an order determined by rank-order lists (ROLs) they submit in advance. In

the dynamic version of this variant, Dynamic student Proposing (DP), students actively

propose to schools, in real-time, in any order they choose. In the Static student Receiving

(SR) variant, students respond to school admission offers according to ROLs they submit

in advance. Finally, in the Dynamic student Receiving (DR) variant, students actively

respond to admission offers from schools, in real-time, by retaining at most one offer at

any given moment.

We make three contributions: theoretical, empirical, and practical. First, we theoret-

ically show that in large markets (with a continuum of students and a finite number of

schools), the DR variant is “EBRD-strategyproof” in that it eliminates non-straightforward

behavior for any level of loss aversion. (As discussed below, in concurrent work, Meisner

and von Wangenheim (2019) prove a related result.) In contrast, EBRD-driven non-

straightforward behavior is predicted to be quite prevalent under the other three variants,

especially in highly competitive settings where the chances of admission into top schools

are low.

Second, in what we view as our main contribution, we experimentally test the model’s

predictions, both (a) across the four algorithm variants, by randomly assigning different

participants to different variants, and (b) across matching settings, by exogenously varying

the degree of competitiveness across ten matching problems that each participant faces.1

In addition to providing strong empirical support to our DA-specific theoretical results

above, our experiment is also unique in providing one of the sharpest tests to date of the

1In related work, Klijn et al. (2019) run a similar four-treatment experiment with the four DA variants.
In contrast to our large-market framework, their experiment has four student subjects with full information
about others’ preferences, and four (non-strategic) schools. This design does not allow for comparisons across
role designation (proposing/receiving), and does not lend itself to testing our EBRD model predictions for
two main reasons. First, in non-large markets, switching role designation drastically changes the (classical-
preferences) incentive structure. Second, under full information, the uncertainty—the essential part of
the EBRD theoretical framework—is about other subjects’ strategies, and is hence not easily estimated or
modeled. Other related work with similar caveats includes Echenique et al. (2016), who run full-information,
dynamic one-to-one DA. See Hakimov and Kübler (2020)’s review for further details.
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EBRD model more generally. In particular, by holding everything fixed other than the

timing of commitments and uncertainty resolution, (a) above provides a clean test of the

model’s timing predictions; and by holding everything fixed other than the competitiveness

of the setting, (b) above directly tests a central prediction of the model regarding how

changes in probability beliefs affect behavior.

Finally, for practitioners, who may care less about theoretical results and their empirical

tests and more about pragmatics, our finding that of the four mechanism variants we

examine, DR in fact stands out in minimizing (though far from completely eliminating)

non-straightforward behavior has practical implications. As discussed below, we view

this result as a valuable, “bottom-line” policy-relevant empirical finding regardless of its

theoretical drivers.

We report our theoretical analysis in section 1. We focus on large-market economies,

with a continuum of students and a finite set of capacity-constrained schools, and rely on

the theoretical characterization of Azevedo and Leshno (2016) and Abdulkadiroğlu et al.

(2015). We show that in such economies, DR is EBRD-strategyproof: for any degree of

loss aversion and any belief distribution, the EBRD model predicts that participants will

always play what we call straightforward strategies (“truthful strategies”). Straightforward

strategies are strategies consistent with a ranking of alternatives according to their con-

sumption values. In DR, straightforwardness implies that the student always picks the

highest-value offer from the set of available offers in each step.

In contrast with DR, the other three variants are not EBRD-strategyproof: in highly

competitive settings, the model predicts loss-averse individuals under SP, SR, and DP to

behave in a non-straightforward way.

The theory in section 1 thus leads to three sets of testable predictions under the

EBRD model. First, within each variant, non-straightforward behavior should increase

with the competitiveness of the matching setting in the three non-EBRD-strategyproof

variants, but not in DR. Second, between the four variants, DR should stand out in having

the lowest share of non-straightforward behavior in competitive environments, but not

in noncompetitive ones (where shares should be similarly low in all variants). Third,

non-straightforward behavior should consist of specific strategies in specific environments

(precisely identified by the EBRD model).

These three sets of qualitative predictions, together with a given distribution of the

degree of loss aversion in a population—which we plug in from previous work—yield

specific quantitative predictions both across matching settings and across DA variants.
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Our experiment is designed to evaluate them.

We outline our experimental design in section 2. Subjects are randomly assigned to one

of the four variants, and play the same ten matching problems (but in different random

orders). Each problem simulates a different large-market matching economy, with five

schools whose values to participants are given in dollar amounts of takeaway money.

Using the population distribution of loss aversion from a previous study, the ten matching

problems are designed to create variation in the predicted prevalence, according to the

EBRD model, of straightforward behavior in the three non-DR treatments. Three of the

ten problems (“weak student” problems) are designed to simulate highly competitive

settings, and predict a moderately high fraction of non-straightforward behavior (24–31

percent); another four (“medium student”) problems predict a lower fraction of such

behavior (12–24 percent); and the remaining three (“strong student”) problems predict

no non-straightforward behavior (0 percent). (Recall that in comparison, the standard,

no-EBRD model predicts 0% of non-straightforward behavior under all four treatments

and all ten matching problems.)

In section 3 we report experimental results from two independent samples, pooled

together (N = 500): Cornell students (N = 196) and Israeli psychology graduate-school

candidates (N = 304) who participated in the (DA-based) Israeli Psychology Master’s

Match (IPMM) and are therefore a highly relevant population. Our main predictions and

results are summarized in figure 3 (page 24).

Our findings support all three sets of theoretical predictions. First, within the three

non-DR treatments, the observed shares of non-straightforward behavior monotonically

decrease from weak- (33–48 percent) to medium- (30–37 percent) to strong-student prob-

lems (19–22 percent). In contrast, within the (EBRD-strategyproof) DR treatment, the

shares are essentially flat (19 to 16 to 16 percent). Second, these shares also imply that

between the variants, we find substantially lower levels of observed non-straightforward

behavior in DR compared to the other three treatments in competitive environments,

and essentially no difference in noncompetitive environments. Third, moving beyond

mere shares of non-straightforward behavior, we further show that (i) the specific non-

straightforward strategies that the model predicts and does not predict, respectively, are

indeed those we commonly observe and do not observe in the data; and (ii) in specific

problems in which the model predicts specific non-straightforward strategies (e.g., ranking

the third-highest-value school on the top of the list), these strategies are indeed the most

common.
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A potential worry when comparing behavior across static and dynamic variants (in

our case, the static variants vs. DR) is that while in static variants we observe submitted

rank-order lists—essentially, the complete strategy—in dynamic variants we only observe

actions. In theory, this could mechanically downward-bias the observed share of non-

straightforward behavior in DR. In practice, however, our evidence suggests that such

potential bias is unlikely. Indeed, we find that in DR, (a) observed non-straightforward

behavior primarily consists of rejecting offers from low-value schools—offers that we

typically observe; and (b) observed non-straightforward behavior is no more prevalent in

rounds where subjects receive more offers.

We close section 3 by discussing other theories that might explain our data. We make

two observations. First, we find across all problems and variants a baseline share of

16–22 percent observed non-straightforward behavior that the model does not predict

and cannot explain, and that is likely explained by other models of strategic confusion,

misunderstanding, and noisy decision-making. Second, no model of misunderstanding or

noise that we are aware of predicts or explains the three sets of qualitative predictions that

our model predicts and that are borne out in the data: variation within and across variants,

and prevalence of specific types of non-straightforward behavior.

We conclude in section 4, where we discuss the potential implications, as well as

limitations of our findings. From a theoretical point of view, our findings are unam-

biguously more consistent with the EBRD than with a no-EBRD model—importantly,

without adding degrees of freedom in the EBRD model (as we fixed parameter values in

advance at a previously estimated distribution). At the same time, we always find 10–

20% more non-straightforward behavior than the (parameter-constrained) EBRD model

predicts—strongly suggesting that loss aversion cannot account for all such observed

behavior. From a policy-maker’s point of view, our findings suggest that one of the four

implementations of DA that we examine—dynamic student receiving (DR)—minimizes

such behavior. Of course, our study leaves open the pragmatic question of whether DR is

feasible to implement in practice.

1 Theoretical Analysis

This section is notation-heavy and technical. Readers with powerful intuition may wish to

skip it and move directly to the mostly self-contained section 2 (p. 15).
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1.1 General Framework

Consider a two-sided market with n capacity-constrained schools and a unit mass con-

tinuum of students, governed by a DA mechanism that matches (masses of) students to

schools. Throughout this section, we rely on the large-market characterization of Azevedo

and Leshno (2016) and Abdulkadiroğlu et al. (2015) and their adaptation of the DA

mechanism to a continuum economy.2

The set of schools is denoted by S = {s1, . . . ,sn+1}, where sn+1 represents the outside

option. Each student i has strict (reference-independent) preference over schools, rep-

resented by the vector of utilities mi = (mi,1, . . . ,mi,n+1). We call this utility component

consumption utility. Later in this section we add a news-utility (Kőszegi and Rabin, 2009)

component. Each school j has a capacity cj ∈ (0,1] that represents the share of students

it can admit and assigns each student i with a relative rank ρij ∈ [0,1], which we call a

priority score.

As shown in Azevedo and Leshno (2016), given students’ and schools’ submitted

rankings, the match result from running DA in this economy is characterized by a vector

of thresholds T = (T1, . . . ,Tn+1), one for each school, where each student i is assigned to

her highest-ranked school such that ρij ≥ Tj . Moreover, student-proposing and student-

receiving DA result in the same match (and associated thresholds vector T). We assume

throughout cn+1 = 1, which implies Tn+1 = 0, so that the outside option is always available

with certainty.

Students know the thresholds T and (correctly) treat them as exogenous. However,

we assume that students do not know their priority score at each school, ρij , but rather

have a probability distribution over their score, which we denote by the CDF Gij . This

assumption captures the idea that while students know how selective a school is, they do

not necessarily know their exact ranking relative to other students.3 We denote student i’s

joint distribution of priority scores in all schools by Gi .

In what follows we focus on the decision from a single-student’s perspective fixing

others’ (i.e., schools’ and other students’) behavior and therefore we often suppress the

index i. Moreover, WLOG we index schools by student i’s preferences so that mi,j > mi,k

for all j < k and we normalize mi,n+1 = 0.

2A problem that might arise in our setting is that while in the continuum economy, the DA algorithm
converges to a well-defined allocation in the limit, the process might not be complete in finite time. We
ignore this issue and assume that a matching is always achieved in finite time.

3Notice that this framework can easily capture uncertainty about the cutoffs by simply incorporating it
into Gij .
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As explained in the introduction we focus on four different variants of the DA algorithm,

resulting from the product {proposing, receiving} × {static, dynamic}. We denote the DA

variant governing the market by M. A matching problem from a student perspective can

therefore be summarized by ⟨M,G,T,m⟩, where M defines the matching process, G is the

joint distribution over priority scores, T is a vector of thresholds, and m is a vector of

school consumption utilities.

1.2 Timing, Beliefs, and Strategies

Fixing all other players’ actions, we can treat each DA variant M as a game student i plays

against Nature, where G governs Nature’s moves. We define periods for each variant below,

but generally, we think of periods as decision nodes where either the student or Nature

makes a move.

A history h ∈ H is a sequence of actions by the student and Nature prescribed to every

period t it includes. We define G(· | h) as the student’s joint belief over priority scores

given history h, with G being her initial belief at h= ∅. A terminal history (in the set of

terminal histories) z ∈ Z is a history that includes a terminal period, i.e., the period in which

no more actions are taken, and the student is informed about her final match from S. The

index of that final match is represented by the outcome function O(z) : Z → {1, . . . ,n+ 1},
and the terminal period is denoted by tz. Subhistories are denoted using subscripts: zt
(with t ≤ tz) is the realization of the terminal history z up to period t.

A strategy l ∈ L for the student assigns an action to every period in which the student

is called to act, for every possible history. We denote the set of continuation strategies

consistent with (i.e., do not preclude reaching) history h by Lh. A history h induces belief

G(· | h). This belief, combined with a variant M, thresholds T, and a strategy l jointly

induce a belief over terminal histories, which we denote by F̃l|h, and also a belief over final

payoffs (i.e., over the support mi) which we denote by Fl|h.

In appendix A we formally present the game our large-market framework induces

under each of the four variants. In the static variants (SP and SR), students submit a ROL

in the first period and learn about the result in the next one; in DP, they apply to a school

in one period and learn the result in the following period, until the first acceptance; and

in DR they receive a set of offers in one period, and can keep one of them in the following

period, until no more offers are received.

We now introduce our definition of non-straightforward behavior (“misrepresentation”

or “non-truthfulness”), which applies to all four variants.
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Definition 1. In a DA variant, a strategy l that conforms to a rank order list (ROL) order-

ing schools by their consumption-utility value is a straightforward (SF) strategy. A non-

straightforward (NSF) strategy is any strategy inconsistent with this ROL.

In the static variants SP and SR, the SF strategy is simply the ROL that ranks schools

by their values. In DP, the SF strategy is to sequentially apply to schools by order of their

values. In DR, it is retaining the highest-valued offer at any given decision node for any

given history.

1.3 Expectations-Based-Reference-Dependent (EBRD) Preferences

As mentioned earlier, in addition to classical consumption utility, students’ utility func-

tions have a news-utility component. Absent this additional news component, given any

history h, the student’s objective function is simply EFl|h [m], i.e., the expected consumption

utility under strategy l given history h. The additional news-utility component is aimed to

capture a basic feature in people’s preferences: the utility and disutility of belief updating.

In particular, learning about a higher likelihood of a good outcome—a pleasant surprise

relative to previously held beliefs—in itself entails positive utility, while learning about

a lower likelihood—a disappointment—in itself entails disutility. Loss aversion in this

model, the disutility from a downward update of one’s beliefs is larger than the utility

from an equally sized upward update.

News utility is therefore defined over belief updates. Formally, during the matching

process, when moving from the history ht to the history ht+1, the student rationally

updates her beliefs over final outcomes from Fl|ht to Fl|ht+1
. Let F and F′ be, respectively,

previously held and updated belief distributions over outcomes. The news utility function

is given by:

N (F′ | F) =
1∫

0

µ (F′p −Fp)dp, (1)

where Fp denotes the consumption level at percentile p of F, and µ(·) is defined as:

µ (x) =

x if x ≥ 0

λx if x < 0,
(2)

with λ ≥ 1 representing an individual’s loss-aversion parameter. The function N describes

how updated beliefs are compared with previously held beliefs, percentile by percentile:
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in each period t, the student compares, for each percentile, the outcome under F′ to the

outcome under F, with a higher weight λ on negative surprises.

The total utility from a strategy l is therefore given by:

U (l) = EFl [m] +EF̃l

[
N

(
Fl|z1
| Fl|∅

)]
+EF̃l

 t̄z∑
t=2

N
(
Fl|zt | Fl|zt−1

) . (3)

The first term is expected consumption utility. The last two terms are the expected sum

of news utility streams from the terminal history, given a probability distribution over

possible terminal histories F̃l .4 Note that beliefs over payoff prior to period 1, i.e., prior to

choosing a strategy, Fl|∅, are not yet defined. To close the model, we assume that prior to

entering the mechanism, the student believes that she will consume the outside option

with certainty, i.e., Fl|∅ = F0 for all l, where F0(x) = 1 for all x ≥mn+1 = 0 and 0 otherwise.

This assumption is calibrationally (i.e., quantitatively), but not qualitatively, substantive.

In particular, it does not affect our between-variant results nor change our qualitative

predictions within each mechanism. However, it is calibrationally substantive in that

assuming more optimistic initial beliefs will require a higher value of λ for the optimal

strategy to be NSF.

Notice that this formulation implicitly assumes that utility from attending different

schools belongs to the same consumption dimension, which captures situations where

schools are differentiated vertically (rather than horizontally). Our between-variant result

(proposition 1) does not hold if we relax it. Dreyfuss et al. (forthcoming) shows a within-

variant result (similar to proposition 2) under complete horizontal differentiation.

To summarize, given a realization of a terminal history z and a chosen strategy l, timing

in our model is defined as follows:

• Period 0: The student believes that she will consume the outside option with certainty.

No action is taken.

• Period 1: The student learns about the mechanism and chooses a strategy l. If she is

called to act, she takes the action prescribed to z1 by l.5 She updates her beliefs from

4In the original version of the Kőszegi and Rabin (2009) model there are two additional parameters: η,
which captures the weight of news utility compared to consumption utility, and γ , which discounts news on
future consumption. We assume that η = 1 as well as γ = 1. The first assumption is simply a normalization.
The second assumption is more substantive and implies that the weight of news utility does not depend on
when in the future said consumption occurs. For further details on both assumptions, see Dreyfuss et al.
(forthcoming).

5In the DR variant, Nature is the first to take an action, whereas in the other three variants, the student
takes the first action.
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F0 to Fl|z1
and receives N (Fl|z1

| F0).

• Period 1 < t < tz: If called to act, the student takes the action prescribed to zt by l.

She updates from Fl|zt−1
to Fl|zt and receives N (Fl|zt | Fl|zt−1

).6

• Period tz: The student learns about her final match and updates to the degenerate

CDF Fl|z. She receives mO(z) +N
(
Fl|z | Fl|zt−1

)
.7

In both static variants, the news utility stream reduces to N (Fl | F0) +EF̃l

[
N

(
Fl|z | Fl

)]
.

The first term compares the belief over final matches induced by the submission of the

ROL l in period 1 to an initial belief F0 (consuming the outside option with certainty). The

second term compares the result of the matching process with the belief over outcomes

induced by the submitted ROL l (and recall that Fl|z is degenerate). In the two dynamic

variants, after the initial period-1 update, beliefs potentially update after each time Nature

takes an action (or when the student changes her strategy, which does not happen in

equilibrium). For example, in DP, the student updates after each rejection or acceptance,

and in DR, she potentially updates after receiving each new set of offers.

1.4 Optimal Strategies

To derive predictions, we use Preferred Personal Equilibrium (PPE; Kőszegi and Rabin,

2009) as our solution concept for all variants.8 First, given a strategy l and a non-terminal,

t-periods-long history h, utility from deviating to some strategy l′ ∈ Lh is given by

Uh(l
′ | l) = EFl′ |h [m] +N

(
Fl′ |h | Fl|ht−1

)
+EF̃l′ |h

 t̄z∑
s=t+1

N
(
Fl′ |zs | Fl′ |zs−1

) , (4)

i.e., expected consumption utility under the deviating strategy plus news utility from

deviating from l to l′ (at time period t+1) plus the expected sum of streams of news utility

given the distribution of terminal histories under l′.

6Note, however, that in equilibrium, in all four variants new information is only learned after Nature’s
actions. Therefore, action taking and non-degenerate belief updating do not occur in the same period.

7In all four variants, Nature is always the last one to take an action: in the static variants, it responds to
the submitted ROL with a final match; in DP, it accepts an application; and in DR it stops sending offers.

8More precisely, we use a slightly modified solution concept from Kőszegi and Rabin (2009)’s appendix,
called optimal consistent plan (OCP). The main difference between the two solution concepts is that while in
PPE the DM holds correct beliefs about all future contingencies from the moment of birth (i.e., before the
first period), in OCP the DM has some initial prior beliefs when she forms her plan (which we fixed to F0
above).
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We adapt the backward-recursive definition of Kőszegi and Rabin (2009) of the PPE

consumption plan to our setup:

Definition 2. Let z be a terminal history. We define the set of z-credible strategies in the

following backward-recursive way: the credible set L∗ztz−1
includes all strategies that maximize

utility at the last action period given the expectation they induce, i.e., all strategies l ∈ L
that satisfy Uztz−1

(l | l) ≥ Uztz−1
(l′ | l) for all l′ ∈ L. Then the set L∗zt contains all strategies

l ∈ ∩h∈Hzt
L∗h that satisfy Uzt(l | l) ≥ Uzt(l

′ | l) for all l′ ∈ ∩h∈Hzt
L∗h, where Hzt is the set of

histories that contain the subhistory zt. I.e., all strategies that (i) maximize utility given the

expectation they induce and (ii) prescribe a credible continuation plan.

A z-credible strategy maximizes utility given the expectation induced by the strategy:

a student that expects to play l must find it optimal to follow through with l at every

decision node in z, assuming any future self also plays optimally.9 The definition of a

z-credible strategy allows us to define our solution concept :

Definition 3. Let L∗ ≡ L∗∅, i.e., the set of strategies that are credible in the empty history. A

PPE strategy l∗ is a strategy that satisfies

l∗ ∈ argmax
l∈L∗

U (l).

In PPE, the core difference between static and dynamic variants is the possibility of

commitment: The submission of a ROL in period 1 in a static variant can be seen as

committing in advance to a strategy in its dynamic counterpart.10 In the dynamic variants,

deviations are possible in each period, and therefore a strategy has to be optimal at all

decision nodes (not just the first one). For example, under DP, a set of on-path equivalent

strategies can be described as a ROL. However, for a ROL to be a PPE, there can be no

profitable deviations at any possible point where a decision can be made: conditional on

the first application prescribed by l (and given the belief induced by the continuation of

l), the student must find it optimal to follow through and send the second application

prescribed by l, and so on.

9The forward-looking definition implies that when evaluating a strategy’s credibility, only credible
deviations are considered, i.e., potential deviations that prescribe non-credible continuation strategies are
not considered.

10In these variants, PPE strategy coincides with the definition of Choice-Acclimating Personal Equilibrium
(Kőszegi and Rabin, 2007).
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1.5 Strategyproofness

As mentioned above, under our large markets assumption, all four variants are strate-

gyproof for classical-preferences students and equivalently to loss-neutral students (λ= 1).

The following definition extends strategyproofness to markets with agents who have EBRD

preferences.

Definition 4. A DA variant is EBRD-strategyproof if for any degree of loss aversion λ, and

any belief G, the optimal (PPE) strategy is SF.

Equipped with our new notion of strategyproofness, the following proposition differ-

entiates between the model’s prediction in the DR variant and the other three variants.

Proposition 1. The Dynamic student-Receiving (DR) variant is EBRD-strategyproof, while the

other three variants (SP, SR, DP) are not EBRD-strategyproof.

The proof is relegated to the online appendix. The second part of the proposition

has been extensively discussed in Dreyfuss et al. (forthcoming) and Meisner and von

Wangenheim (2019) and is easily proved by a counterexample. (We provide examples in

section 2.) The first part of the proposition is proved by backward induction and has a

very simple intuition. The model predicts that, no matter what she had planned to do,

when a student is presented with a choice set of alternatives that she can get with certainty,

she will always choose the one that gives her the highest consumption utility. In DR,

the student chooses only between schools that have sent her an offer, i.e., only between

“sure things,” and hence cannot do better than keeping the highest-value one. Applying

this argument iteratively shows that in DR, the straightforward strategy is indeed the

only one that is optimal in any decision node, in any possible history. This highlights

the importance of dynamic implementation: In (the static) SR, the student can lower her

expectations and reduce potential disappointment by committing (via ROL submission) to

reject some offers. In contrast, in DR, the student anticipates that she will keep desirable

offers and is therefore forced to choose a SF strategy.11

We note that in concurrent work, Meisner and von Wangenheim (2019) (proposition 4)

show a similar, albeit different result about DR, using Rosato (2014)’s model of dynamic

EBRD preferences. Assuming a unique stable matching for any realization of preferences,

11This also illustrates a more subtle point about welfare: while we predict that DR maximizes the students’
ex-ante consumption utility, it actually decreases their overall (consumption and news) utility. We still find DR
appealing since we suspect EBRD-driven behavior in these settings may be a mistake. For further discussion,
see DHR.

13



they show the existence of a Bayesian equilibrium in which all players play the SF strategy.

A unique stable matching always exists in large markets; see Karpov (2019) for necessary

and sufficient conditions in non-large markets. We assume large markets and show EBRD-

strategyproofness, i.e., for any profile of other players’ strategies, the player picks the

SF strategy. We view the two results as complementary: assuming large markets implies

(EBRD) strategyproofness, generalizing to all markets in which a unique stable matching

is guaranteed implies existence.

1.6 Varying Competitiveness

Proposition 1 makes a stark prediction about observed behavior in DR vs. the other variants.

We now formalize the model’s second prediction, which relates observed behavior in the

static variants to competitiveness.

In each non-DR variant, the threshold λ above which NSF behavior is optimal depends

on the matching environment. In particular, since NSF behavior reflects an attempt to

avoid disappointment from future rejections, this threshold λ increases as disappointment

becomes less likely, all else equal. This makes an additional testable comparative static:

NSF behavior increases with competitiveness.

Formally, denote the admission probability to school j by Pr(ρj > Tj) ≡ qj . Competi-

tiveness is defined by the probability of acceptance at the highest-valued school, q1. The

next proposition is an extension of Meisner and von Wangenheim (2019)’s proposition 2.

Before stating it, we impose the following assumption:

Assumption 1.

1. ρj ⊥ ρk for all j, k.

2. qj < qk for all j < k.

In words, we assume that (1) priority score is independent across schools, and (2) admission

probability is decreasing with school value. While its part (1) in particular may not hold in

important real-life deployments of DA, assumption 1 yields sharper theoretical predictions

that our experiment—which satisfied it by design—can cleanly test. In particular, it

generates a tighter upper bound on the threshold λ, and it generates an upper bound in

the case of q1 ≥ 0.5.12

12In the parameters of our model, Meisner and von Wangenheim (2019)’s upper bound λ translates to
1+ 1

1−2q1
, and does not exist for q1 ≥ 0.5.
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Proposition 2 (Based on Meisner and von Wangenheim 2019).

1. If λ < 1+ 2
1−q1
≡ λ, the SF ROL is strictly optimal in SP and SR.

2. Suppose that assumption 1 holds. Then:

If λ > 1+ 2
(1−q1)2 ≡ λ, the SF ROL is strictly suboptimal in SP and SR.

In the following sections, we test specific predictions implied by this proposition (see,

e.g., figure 2 and the related explanation in the next section). We do so by experimentally

varying q1. Specifically, subjects in our experiment face matching environments (i.e.,

rounds) with three levels of competitiveness: high, medium, and low, with q1 = 0.05, q1 =

0.2–0.3, and q1 = 0.6–0.65, respectively. In proposition 2 these q1 values translate to the

following non-overlapping bounds around λ: λ= 3.11, λ= 3.22 (high competitiveness);

λ = 3.50–3.85, λ = 4.13–5.08 (medium); and λ = 6.00–6.71, λ = 13.50–17.32 (low

competitiveness). As long as the population distribution of λ has a sufficiently large

mass outside the bounded intervals (i.e., inside the ranges 3.22–3.5 and 5.08–6.00), the

proposition implies that the prevalence of NSF behavior should increase with round

competitiveness.13

2 Experimental Design and Predictions

2.1 The Experiment

The experiment consists of simulating a large matching market. Each subject is randomly

assigned to one of 2 × 2 ({Static vs. Dynamic} × {Proposing vs. Receiving}) treatments

denoted SP, SR, DP, and DR. This 2 × 2 design allows us to independently explore the

difference both between proposing and receiving mechanisms and between static and

dynamic implementations, by varying each of the two features while holding the other one

fixed at both states. However, since the theory sets the EBRD-proof DR variant apart from

the other three, it is assigned 40% of the subjects, while the other three are each assigned

20% of subjects.

Our goal was to design four treatments as similar to each other as reasonably possible in

terms of instructions structure, length and language, and, more generally, all aspects of the

13Specifically, these analytical bounds imply that the increase in NSF share between high vs. medium
round competitiveness is determined by the mass inside the range 3.22–3.5 and the increase in NSF share
between medium vs. low competitiveness is determined by the mass inside the range 5.08–6.00. Notice that
in the next section, we use specific matching problems and therefore get specific thresholds (rather than
bounds).
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user-interface look and feel. (Appendix C uses a four-color-coding scheme to indicate all

cross-treatment differences.) In all treatments, following a tutorial and an attention check,

each subject participates in ten order-randomized incentivized matching problems, each

simulating a different large matching market. We then collect demographic variables and

feedback. Each subject who successfully finishes the experiment receives a participation

fee and the sum of matched-school values from every matching problem.

2.1.1 A Matching Problem

A matching problem consists of five schools with which the subject can be matched at the

end of the matching process. Each school is given a dollar value—the payment the subject

will gain if matched with said school.

The experimental design closely follows the theory section: The subject is assigned a

priority score at every school, which is a random, uniformly and independently distributed

integer between 0 and 99. Each school has a threshold, the minimal accepted priority score.

That is, only candidates whose priority score is above a school’s threshold can be accepted

to that school.

At the beginning of each problem, the subject learns each school’s threshold but not

her own priority scores at the different schools. This creates an unconditional probability

of acceptance at each school (= 1− threshold
100 ). Figure 1 reproduces the example matching

problem given in the tutorial, the way it appears on subjects’ screen.

Figure 1: Screenshot of an example matching problem

Notes: Example screenshot of the table describing a matching problem. The table’s structure is identical in
all treatments and rounds. School names and parameters differ by round. See table 2 for the parameters
used in the ten paying rounds (the shown screenshot is taken from the tutorial round).

To make the process transparent and easier to monitor, at the end of every matching

process subjects receive full information: they learn their match as well as their priority
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score at each school (the “?”s in figure 1 are replaced with the realized priority scores).

2.1.2 The Matching Process

The matching process varies by treatment, closely resembling the structure outlined in

the theory section. In both static treatments (SP and SR), subjects submit a rank-order list

(ROL) of schools in advance and are matched with the highest-ranked school in which

their priority score exceeds its threshold. In DP, subjects sequentially apply to schools,

and get accepted to the first school in which their priority score exceeds its threshold. In

DR, subjects sequentially receive offers from schools in which they exceed the threshold,

with scores higher above the threshold resulting in earlier-arriving offers, and can keep at

most one offer at any point. Appendix C provides screenshots for all treatments.14

2.2 Theoretical Predictions

2.2.1 Matching Problems

As explained in the theory section, a subject with a coefficient of loss aversion λ is faced

with a matching problem ⟨M,G,T,m⟩, where M is the matching process, G is the joint

distribution over priority scores (recall that priority scores in the experiment are uniform

and independent), T is a vector of thresholds and m is a vector of school consumption

utilities. We assume a linear consumption utility, i.e., if sj is worth v dollars, then mj = v.

Last, schools are denoted by their indices (i.e., s1 is denoted by 1), and ROLs are represented

by a sequences of numbers denoting the order in the list (i.e., the ROL ranking five schools

in descending order of value is 12345).

When designing our experiment, our goal was to create variation in NSF predictions

not only across treatments—DR vs. the other three variants, testing proposition 1—but

also across problems—more vs. less competitive, testing proposition 2. To create variation

in competitiveness, we searched for settings we could classify into three levels of predicted

NSF: high, medium, and low. We briefly describe our search process; for further details,

see the appendix.

We calculated optimal-strategy predictions for a range of λs, for each of the non-DR

14The stream of offers a subject i receives in DR contains at most five periods and is determined as follows.
For each school sj in which the subject exceeds the threshold, the segment [threshold, 99] is divided into
five quintiles, Q1, . . . ,Q5 (where Q1 is the bottom quintile). The subject then receives an offer from sj in
period 6−Qij , where Qij is the quintile in which her priority score lies. This induces a stream of offers from
different sets of schools at different periods, where periods with no offers are eliminated.
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variants, in each matching problem, from a large pool of candidate problems. Figure

2 illustrates, for two example matching problems (#1 and #7), the prediction over the

range λ ∈ [2.5,5.5]. For each possible strategy—which, for these three variants, can be

represented as a ROL—we calculated the resulting expected overall (consumption + news)

utility at a range of λs. Each subfigure shows all the ROLs that maximize utility for some

λ in the range for a given problem and variant. For the dynamic variant DP, we also

verified that any point on the envelope represents a consistent strategy, i.e., it is immune to

profitable surprise deviations, and is thus a PPE. Therefore, the envelope in each subfigure

represents the model’s optimal-strategy predictions by λ.

As the figure demonstrates, an optimal strategy in the non-DR variants depends on λ.

For low levels of loss aversion, the SF strategy (i.e., the ROL 12345) is optimal. However, a

threshold λ exists above which NSF strategies are optimal. Because the gradual resolution

of uncertainty in DP yields a different expected news utility, said threshold differs across

the variants—compare subfigures (a) and (c) with subfigures (b) and (d). Moreover, because

the environment in problem #7 is less competitive than in problem #1, the threshold is

higher in problem #7, implying less prevalent NSF behavior—compare subfigures (a) and

(b) with subfigures (c) and (d). Notably, the envelopes consist of specific NSF strategies

that the model predicts as optimal under the different problems and variants, yielding an

additional prediction that we assess empirically below.

Having created, for each candidate matching problem, optimal-strategy predictions

as a function of an individual’s loss aversion λ, we generated population predictions. We

wanted to create ex-ante, no-degrees-of-freedom predictions but, naturally, did not have a

previously estimated distribution of λ in our subject populations. We opted for basing our

population predictions on past estimates from a somewhat similar population: estimates

from (Dreyfuss et al., forthcoming) among lab-experiment participants in a related context

(Li, 2017). In those estimates, 67 percent have 1 ≤ λ ≤ 3, and are therefore never predicted

to deviate from SF behavior; 24 percent have 3 < λ ≤ 5; 7 percent have 5 < λ ≤ 7; and 2

percent have 7 < λ ≤ 10; for details, see the online appendix. We note that any distribution

with a tail of λ > 3 will result in qualitatively similar directional predictions.

Table 2 presents the ten matching problems we selected for our experiment. Each

problem is defined as five school values and (unconditional) probabilities of acceptance.

The three columns under “NSF (%)” report the population prediction for the prevalence

of NSF strategies under each of the four treatments (recall that our large market property

implies that the two static treatments are equivalent, so their predictions coincide). For
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Figure 2: Candidate optimal strategies in example matching problems
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(a) Static variants, problem #1
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(c) Static variants, problem #7
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Notes: Candidate optimal strategies for matching problems #1 and #7. Schools are denoted by their indices
(i.e., s1 is denoted by 1), and ROLs are represented by a sequences of numbers denoting the order in the list.
Matching problem #1 is defined by the vectors of dollar school values (1.5, 1, 0.75, 0.5 0.25) and thresholds
(0.95,0.8,0.75,0.1,0), and problem #7 is defined by school values (1.25, 1, 0.75, 0.5 0.25) and thresholds
(0.7,0.15,0.1,0.05,0). (See table 2 for school values and thresholds for all problems #1–#10.) Subfigures
(a) and (c) plot, for the static variants, utilities from all strategies that are optimal for some loss-aversion
parameter in the range 2.5 ≤ λ ≤ 5.5 (grid step = 0.1). Panels (b) and (d) do the same for DP.

example, the 31% prediction in problem #1 in the SP/SR column reflects the estimated

population share with λ > 3.1, which in that problem implies that the ROL 12345 is

no longer an optimal strategy (see figure 2(a)). We chose these ten matching problems,

which each subject in our experiment faces, based on the population predictions in these

“NSF (%)” columns. (The four rightmost columns report population predictions using

alternative measures; we discuss them below.)
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Table 2: Matching problems and EBRD predictions

Matching problem Predictions

#
$ Values (s1,s2,s3,s4,s5) NSF (%) Costly NSF (%) DO NSF (%)
Probs. (q1,q2,q3,q4,q5) DR SP/SR DP SP/SR DP SP SR

1
(1.50, 1.00, 0.75, 0.50, 0.25)

0% 31% 26% 7% 7% 31% 7%
(0.05, 0.20, 0.25, 0.90, 1.00)

2
(1.50, 1.00, 0.75, 0.50, 0.25)

0% 31% 24% 7% 9% 31% 7%
(0.05, 0.20, 0.30, 0.40, 1.00)

3
(1.50, 1.00, 0.75, 0.50, 0.25)

0% 29% 29% 4% 3% 29% 4%
(0.05, 0.10, 0.85, 0.9, 1.00)

4
(1.25, 1.00, 0.75, 0.50, 0.25)

0% 24% 18% 4% 3% 24% 4%
(0.20, 0.80, 0.90, 0.95, 1.00)

5
(1.50, 1.00, 0.75, 0.50, 0.25)

0% 21% 18% 4% 4% 21% 4%
(0.25, 0.80, 0.85, 0.95, 1.00)

6
(1.25, 1.00, 0.75, 0.50, 0.25)

0% 19% 12% 4% 2% 19% 4%
(0.25, 0.75, 0.80, 0.85, 1.00)

7
(1.25, 1.00, 0.75, 0.50, 0.25)

0% 18% 14% 5% 3% 18% 5%
(0.30, 0.85, 0.90, 0.95, 1.00)

8
(1.25, 1.00, 0.75, 0.50, 0.25)

0% 0% 0% 0% 0% 0% 0%
(0.65, 0.70, 0.85, 0.95, 1.00)

9
(1.50, 1.25, 1.00, 0.50, 0.25)

0% 0% 0% 0% 0% 0% 0%
(0.65, 0.75, 0.80, 0.85, 1.00)

10
(1.25, 1.00, 0.75, 0.50, 0.25)

0% 0% 0% 0% 0% 0% 0%
(0.60, 0.65, 0.80, 0.90, 1.00)

Notes: Parameters and population predictions for each of the ten matching problems. Matching problem
columns describe schools’ money values (top row) and unconditional probabilities of acceptance (bottom
row) in each problem. Prediction columns are based on an empirically estimated distribution of λ from
Dreyfuss et al. (forthcoming).

2.2.2 Within-treatment Predictions

The most important feature for predicting NSF shares in a matching problem is the

probability of acceptance at the highest-value school (see proposition 2). Specifically,

this probability determines the predicted behavior of a subject with a moderately high

loss-aversion parameter (say, 3 < λ < 6).

We use the label “weak-student” problems for matching problems 1–3, where the

probability of acceptance at the highest-valued school is small (5%), which implies a large

predicted share of NSF strategies (24%–31% in the non-DR “NSF (%)” columns). We

use the label “medium-student” problems for problems 4–7, where the probability of
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acceptance at the highest-value school is larger (20%–30%), implying a lower predicted

share of NSF strategies (12%–24%). Finally, we use the label “strong-student” problems

for problems 8–10, where the probability of acceptance at the highest-value school is

high (60%–65%), which implies no predicted NSF strategies (under the past empirically

estimated distribution of λ we use). The online appendix further describes the process and

the criteria we used for choosing the sets of values and probabilities in the ten problems.

In summary, we predict that under the three non-DR treatments, the share of NSF

strategies will monotonically decrease from weak- to medium- to strong-student problems.

We also predict how agents will depart from SF strategies. For example, as Figure 2 shows,

the second and third most prevalent NSF ROLs in the static treatments are predicted to be

21345 and 23145, respectively.

2.2.3 Between-treatments Predictions

As reported in the three columns under “NSF (%)” in table 2, we predict varying shares of

NSF strategies under the three non-DR treatments, and none under DR. It is important

to note that these are predictions on chosen strategies; however, in our experiment we

only collect data on observed behavior. Under the static treatments (SP, SR) there is no

difference between strategies and behavior, as we fully observe subjects’ submitted ROLs.

However, under the dynamic treatments (DP, DR), we only observe actions dynamically

taken by subjects, which only reveal partial information on full strategies.

Specifically, under DP, we only observe the set and order of schools a subject applied

to by the time the process ends (when either some school accepts, the subject decides to

stop the process, or every school rejects the subject). Similarly, in DR we only observe the

sequence of offer sets a student received and the schools the student decided to keep from

those sets. Such observed decisions can be either SF-consistent or SF-inconsistent.

For example, suppose a subject’s priority score at the highest-value school is higher than

its threshold (so once the subject applies to that school, the process terminates). In that

case, a SF-consistent behavior under DP consists of the subject only applying to that school.

However, such observed behavior could also result from a NSF strategy such as 14235. On

the other hand, suppose a subject’s priority score at the highest-value school is lower than

the threshold. Under DR, the school never sends an offer to that subject. In that case—by

far the most common case in weak-student matching problems (see table 2)—we will never

observe the subject’s choice regarding that highest-value school in DR. More generally, a

subject’s behavior may be SF-consistent merely because we had limited opportunity to
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observe deviations. As a result, SF-inconsistent behavior in dynamic treatments is only a

lower bound on NSF strategies.

Table 2’s four rightmost columns report theoretical predictions using two alternatives

to our primary (“NSF (%)”) measure. These alternative measures allow for a more di-

rect comparison across treatments. However, as discussed below, the theory predicts

only relatively small cross-treatment differences in these measures—differences that our

experiment is not optimized to detect.

The first measure is costly NSF behavior, which measures NSF behavior that is also

payoff relevant (i.e., SF-inconsistent behavior that affected the subject’s final match). This

measure allows for direct comparisons between all four treatments. Clearly, under the

DR treatment, we predict no such behavior; however, as the two columns under “Costly

NSF (%)” in table 2 show, the predicted share for this measure varies little across both

matching problems and treatments (and always remains below 10%).15

The second measure is Dynamically-observable (DO) NSF behavior, which counts NSF

ROLs in the static treatments that would have been observed as SF-inconsistent behavior

in their dynamic counterpart treatment. For SP, these are ROLs that would have been

classified as SF-inconsistent if implemented as a sequence of applications to schools. For

SR, these are ROLs that would have been classified as SF-inconsistent if implemented as

keep/reject responses to sequentially arriving school offers.

As suggested by the two columns under “DO NSF (%)” in table 2, the theory predicts

that under SP, every NSF strategy is also dynamically observable. In contrast, the theory

predicts that under SR, all dynamically observable NSF strategies are costly. These two

predicted identities limit the usability of this measure as an alternative for cross-treatment

comparisons; however, they provide additional within-treatment predictions that we

investigate in the next section.16

15A potential alternative to costly NSF is actual earnings; this measure is omitted from table 2 but is
presented in the online appendix.

16The driver behind these predicted identities is the fact that the NSF strategies predicted by the model in
the non-DR treatments always involve the highest-value school. See Meisner and von Wangenheim (2019)’s
characterization.
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3 Results

3.1 Sample

We ran the experiment on two different samples:17 participants in Cornell’s BSL (Business

Simulation Lab) SONA-system, recruited from June 30 to July 9, 2021, and participants

in the 2020 and 2021 Israeli Psychology Matching Mechanism (IPMM)—a DA-based

clearinghouse that matches students and graduate programs in psychology—recruited

from August 26 to September 5, 2021. We used identical experimental interfaces, except

for language (English vs. Hebrew) and currency (we used 1 USD = 4 NIS in the experiment

and $4 vs. 15 NIS as a show-up fee).

At Cornell, 223 subjects clicked on the experiment’s link, and we closed the experiment

after 206 subjects completed it. They earned on average $13.23 (including the show-up

fee); the median completion time was 16.8 minutes. As preregistered, we dropped eight

subjects who failed the attention check and another two who completed the experiment

itself (after the tutorial) in more than an hour. The remaining 196 subjects’ assignment is:

77 (39.3 percent) DR, 39 (19.9) SR, 40 (20.4) SP and 40 (20.4) DP.

In Israel, we first emailed 1,095 invites to the 2021 IPMM participant pool, of whom

225 clicked on the experiment and 171 completed it. To meet our preregistered 200-

subjects target, we emailed 1,206 additional invites to the 2020 pool, of whom 215 clicked

on the experiment and 138 completed it. Together, they earned an average of $16.43

(including the show-up fee) in a median completion time of 22.2 minutes. After dropping

five subjects who failed the attention check, the remaining 304 subjects’ assignment is:

126 (41.4 percent) DR, 60 (19.7) SR, 59 (19.4) SP, and 59 (19.4) DP.

In the rest of this section we pool the samples (N = 500; 203 DR and 99 each SP, SR,

and DP). Online appendix D replicates the main analysis by sample. While the general

level of observed NSF behavior is markedly lower in the IPMM sample, our main findings

remain similar across the samples.

3.2 NSF Shares

Panel (a) of figure 3 presents the EBRD model’s predictions regarding NSF shares (based

on said past estimated population distribution of loss aversion; ▲) compared to classical-

preferences predictions (▼), by treatment and problem type. Within treatments, in the

17Preregistered separately at https://aspredicted.org/rd2y5.pdf and https://aspredicted.org/4qc8q.pdf.
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three non-DR treatments, the EBRD-predicted NSF-share declines as competitiveness

decreases. Across treatments, in all but strong-student problem types, the EBRD-predicted

lower (0 percent) NSF share in DR compared to the other three treatments. Trivially,

classical preferences predict 0 percent NSF in all treatments and problems.

Panel (b) presents empirical shares of NSF behavior (■), as well as p-values from

equality-of-coefficients tests.

Figure 3: Non-straightforward (NSF) behavior
(a) Theoretical Predictions: Classical & EBRD Preferences
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Notes: Panel (a): NSF-share predictions by treatment and problem type under classical preferences (down-
wards triangle) and EBRD preferences (upwards triangle). Panel (b): empirical shares. Error bars: standard
errors from a regression of NSF behavior on problem type, clustering at the individual level. p-values: Wald
tests.

We make three observations. First, looking at levels, there appears to be an across-the-

board minimum “baseline” of 16–22 percent NSF behavior, in all treatments, that neither

classical nor EBRD preferences can explain.

Second, looking at within-treatment trends, the data strongly support the EBRD predic-

tion of a notable decrease in the share of observed NSF behavior in all non-DR treatments

when moving from weak- to medium- to strong-student problem types: from 33–48 to

30–37 to 19–22 percent. (The flat, zero-NSF predictions of classical preferences are easily
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rejected.18) In contrast, the trend in DR is much flatter (from 19 to 16 to 16 percent

NSF), consistent with our EBRD-model predictions (which, for DR, coincide with those of

classical preferences).

Third, comparing across treatments, the EBRD predictions are also supported by

the data. In contrast with the constant no-behavior-difference prediction of classical

preferences, NSF shares in DR are substantially lower than in other treatments in weak-

and medium-student problems, where EBRD predicts a difference; but are essentially

indistinguishable in strong-student problems, where the model predicts no difference.

Online appendix D reproduces panel (b) of figure 3 twice: for subjects’ first vs. last five

rounds. While the above three observations generally hold in each of the two subsamples,

NSF shares noticeably drop from the first to last five rounds—suggesting that experience-

based learning during the experiment may make our results still more consistent with

the EBRD model’s predictions. In particular, regarding levels, the minimum baseline that

neither model can explain decreases in the last five rounds to 10–17 percent; and, regarding

trends, the declines in the non-DR treatments from weak- to medium- to strong-student

problems become 30–37 to 23–36 to 12–16.

3.3 ROL Types

Moving beyond mere NSF shares, the model (with our distribution of λ) predicts a specific

distribution of NSF ROLs in both static treatments.19 Figure 4 compares the predicted

distribution (horizontal axis) vs. the observed distribution (vertical axis), pooling together

all ten matching problems in the two static treatments.

The figure shows that NSF ROLs that are predicted to be prevalent—dots closer to the

right half of the figure—are indeed roughly as empirically common—close to the 45◦ line.

In particular, the two NSF ROLs with the first and second highest predicted shares—21345

and 23145, respectively—are also the first and second most empirically prevalent NSF

ROLs. While some predicted ROLs are never observed in the data and vice versa, the

differences between prediction and empirical prevalence are never much higher than one

percentage point.

Finally, zooming further in, we examine specific ROL-type predictions in specific

18The classical-vs.-EBRD comparison is “fair” in that both models have zero degrees of freedom. (While
the EBRD model has a free parameter (λ), our predictions have no free parameters, as they were generated,
prior to data collection, based on a previously estimated population distribution of λ.)

19The same is true for DP; however, in DP we do not observe complete strategies but rather incomplete
sequences of applications.
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Figure 4: Predicted vs. observed frequency of ROLs
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Notes: Theoretical EBRD predictions and empirical shares of ROLs in the static treatments (logarithmic
scale; N =1,980). ROLs shown are all those with at least 1% predicted share or empirical share.

problems. We focus on weak problems: problems #1–3 in table 2. In addition to having

a higher predicted NSF share, we intentionally designed these three problems to show

variation in the top-ranked school among loss-averse subjects. Specifically, in problem

#3, q2 = 0.1 is relatively low, while q3 = 0.85 is relatively high, yielding a prediction that

the most prevalent NSF ROL will rank the third-highest-value school on top. In contrast,

in problems #1 and #2, q2 = 0.2 is higher, and q3 = 0.25–0.3 is only slightly above q2,

yielding a prediction that the most prevalent ROL will rank the second-highest-value

school on top. Since problems #1–3 are otherwise similar to each other, we view the test of

these predictions as a particularly sharp test of the theory.

Figure 5 has similar structure to figure 3, but it shows predictions and results by

problem, only for problems #1–3 and only for NSF behavior with s2 on top in panels (a)

and (b), and with s3 on top in panels (c) and (d).

Comparing panel (a) vs. (b) and panel (c) vs. (d) suggests that the data qualitatively

track most patterns predicted by the EBRD model. In contrast, the the data mostly reject

non-trend predicted by classical preferences.
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3.4 NSF Behavior in DR

Our main between-treatments prediction compares DR to the other three treatments.

However, as discussed in section 2, such comparisons may favor DR because our main

outcome, NSF shares, only counts actions taken by subjects, not complete strategies. The

general worry is that unlike in the static treatments, in DR, some NSF strategies would

not lead to observed NSF behavior unless the subject received sufficiently many offers. In

particular, if NSF behavior in DR is driven by strategies consistent with ROLs prevalent

in the static treatments—e.g., ROLs like 21345—then observations in which the subject

does not receive an offer from the highest-value school, which are quite common given

our design, would not be classified as SF-inconsistent even if the subject chose a non-

straightforward strategy. In short, subjects may have fewer opportunities in DR to display

SF-inconsistent behavior—especially if they play NSF strategies consistent with common

NSF ROLs observed in the static treatments.

In this section, we present two types of evidence suggesting this is not likely the case.

First, we show that the most prevalent NSF behavior in DR does not reflect NSF strategies

that often fail to appear as SF-inconsistent. Second, we show that observed NSF does not

increase with the number of offers or with the presence of high-value offers.

First, across all ten problems, 338 out of 2,030 subject-problem observations (17

percent) in DR are classified as NSF. Of these 338 NSF observations, 249 (74 percent)

involve rejecting offers received in the first period. Of these first-period offer rejection

sets, 215 (86 percent) contain only the lowest-, or second-to-lowest-value school, or both.

In other words, most observed NSF behavior in DR involves getting offers only from

low-value schools in the first period, and rejecting them. This behavior appears unique

to DR and implies that NSF behavior in our DR data typically occurs in situations that

subjects often face.

Second, we do not find that observed NSF behavior increases with the number of offers

received. Table 3 classifies all 2,030 DR observations and 338 DR NSFs by the number of

offers received and, if anything, shows the opposite trend.

Moreover, if subjects followed a strategy consistent with a ROL such as 21345, we

would expect to see a higher fraction of observed NSF behavior conditional on receiving

an offer from the highest-value school compared to not receiving it. However, we do not

find that in the data: There are 621 observations in which subjects received an offer from

the highest-value school and 1,409 in which they did not; of those, respectively, 98 (16

percent) and 240 (17 percent) are classified as NSF.
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Table 3: NSF by number of received offers in DR

# offers # obs. # NSF behavior obs. % NSF behavior obs.
1 95 25 26%
2 294 51 17%
3 592 94 16%
4 743 122 16%
5 306 46 15%

1–5 2,030 338 17%
Notes: Distribution of DR observations by the number of offers the subject received (N = 2,030).

3.5 Alternative Measures

As discussed in section 2, in addition to the share of all NSF behavior, we had two addi-

tional NSF measures that allow for more direct comparisons across treatments. The first,

costly NSF, counts only payoff-relevant NSF behavior, and allows for direct comparisons

across all four treatments. The second, dynamically observable NSF (DO NSF), counts

only NSF behavior that would have been observable in a dynamic implementation, and

allows for direct comparisons between SP and DP, and between SR and DR.

Panels (a) and (c) in figure 6 show our predictions (see also table 2 on page 20 and its

accompanying discussion). As panel (a) shows, we predict a small share of costly NSF, with

little variation across and within treatments (0–6 percent). Panel (c) shows that for DO

NSF, in SP we predict significant variation—the same variation predicted for NSF—across

problem types, and in SR we predict small variation—the same variation predicted for

costly NSF—across problem types.

Empirically, panel (b) shows a slightly higher-than-predicted level of costly NSF behav-

ior (6–14 percent), with no systematic differences across treatments and problem types.

Panel (d) shows that for SP, when moving from weak- to medium- to strong-student prob-

lem types, DO NSF drops from 31 to 27 to 15 percent, consistent with the EBRD-predicted

trend. In SR, the level of DO NSF is higher than predicted (10–16 percent), with no clear

trend across problem types.

While we did not optimize our experiment to detect differences in these alternative

measures, in principle we did collect enough observations to marginally detect a 4–6

percent predicted difference in them, both within each of the non-DR treatments and

between DR and non-DR treatments, under ideal conditions—i.e., if the data were perfectly

described by the model. However, as discussed above, we find higher NSF shares than our

model predicts. These higher NSF shares muddy the picture for both alternative measures.
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Start with costly NSF. We find that NSF behavior where the model does not predict

it—in DR and in strong-student rounds—is costly 36–63 percent of the time, whereas

in weak- and medium-student rounds in the non-DR treatments it is costly only 18–42

percent of the time (and always less, within each non-DR treatment, than in strong-student

rounds). Therefore, the empirical NSF-to-costly-NSF ratio differs both between DR and

non-DR treatments, and between problem types within the non-DR treatments, reflecting

behavior that our model does not predict.

Moving to DO NSF, in SR we see a similarly high NSF-to-DO-NSF ratio in strong-

relative to medium- and weak-student problems, masking the (small) predicted difference

in DO NSF. In contrast, in SP, this ratio is similarly high across problem types. Both of

these findings simply reflect the empirical distribution of NSF ROLs, discussed in section

3.3: since NSF ROLs typically involve downranking the highest-value school, they are

typically dynamically observable under DP, but much less so under DR.

To summarize, we examine two alternative measures, both allowing direct comparisons

between DR and other treatments. However, for these measures, our model predicts small

variation, making it difficult to detect such differences in our (inherently noisy) data.

Digging further in, we find that this variation is masked by the presence and the type

of NSF behavior in the treatment (DR) and problem type (strong) in which the model

predicts no NSF.

3.6 Alternative Explanations

Throughout this section, we show that the data fit our (no-degrees-of-freedom) EBRD

model significantly better than they do classical preferences. Nevertheless, how well can

alternative models explain the data?

Recall that we review three sets of empirical patterns, all consistent with our EBRD

model: (i) variation in NSF shares within DA variants; (ii) variation in shares across vari-

ants;20 and (iii) prevalence of specific NSF types, both pooling across matching problems,

and for specific problems. At the same time, as we note at the beginning of this section,

we also find a little-varying “non-pattern”: an across-the-board “baseline” NSF share (of

roughly 16–22 percent in figure 3) that neither classical nor EBRD preferences can explain.

In summary, the EBRD model, while explaining a lot of the observed data, appears to

be an incomplete explanation. Alternative explanations—noisy decision making, cognitive

20We continue to assume that a mechanical bias does not drive the lower observed NSF share in DR. See
the discussion in section 3.4.
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limitations, strategic confusion, misunderstanding, or other explanations—likely play a

role too. However, no alternative model we are aware of can replace EBRD in explaining

the three patterns above.

Trembling-hand models, with an exogenous probability of making errors, are inconsis-

tent with the observed within-treatment variation (as long as the trembles are independent

of the matching problem—as is typically assumed). They are also inconsistent with the

observed cross-treatment variation: In DR, subjects typically make multiple Keep/Reject

decisions, and are therefore predicted by trembling-hand models to make more errors

than in the (single-ROL-decision) static treatments. Finally, they cannot easily explain

the prevalence of specific NSF strategies (unless one imposes a specific distribution over

trembles), and in particular of specific NSF strategies in specific matching problems.

Random utility models (RUMs)—which in our context boil down to decision-makers

randomly making errors, with the probability of making an error decreasing with its

cost—can potentially explain the observed within-variant patterns, since increasing com-

petitiveness decreases the cost of, e.g., submitting 21345 instead of 12345. However,

they too are inconsistent with the observed cross-treatment variation, for the same reason

above. Importantly, these models are also inconsistent with the prevalent ROL types

in our data (see figure 4): Since RUMs predict that low-cost errors are the most likely,

in our experiment, RUMs would typically predict low-cost NSFs, such as 12354 (whose

expected value is only slightly below that of the SF strategy 12345) to be quite prevalent,

but in reality these are rarely seen in the data. In fact, when choosing parameters for our

experiment, one of our goals was to tell apart EBRD from RUMs; we chose parameters

such that EBRD and logit (a specific RUM) make different predictions.

Recent models of cognitive limitations, strategic confusion, and misunderstanding—

such as Li (2017), Pycia and Troyan (2021), Börgers and Li (2019) and Gonczarowski

et al. (2022)—classify mechanisms, their variants, or their implementations (e.g., how the

variant is described to subjects) by different notions of how simple they are. Therefore,

they do not generally explain variation in behavior within a specific implementation of

a specific variant of a specific mechanism. Moreover, while some such models suggest

that dynamic implementation increases straightforward behavior, none of the models we

are aware of tells apart dynamic-proposing and dynamic-receiving DA—implying that

these models cannot easily explain the observed variation across treatments either. Finally,

these models are also silent on the specific types of errors people make in specific choice

situations (within a specific mechanism) and thus cannot easily explain the prevalence of
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specific NSF types in general or within specific matching problems.

4 Discussion

Our findings have several implications. First, we replicate previous findings that a sub-

stantial fraction of participants in simple allocation games choose seemingly dominated

actions. Such findings are particularly striking in controlled lab settings, where said

seemingly dominated actions are equivalent to choosing first-order stochastically domi-

nated (FOSD) lotteries over sums of money. While in clear violation of the predictions of

Classical-preferences models, our analysis suggests that the inclusion of EBRD preferences

can explain a substantial fraction of such behavior. Moreover, the EBRD model can explain

specific types of such FOSD-violating behavior, both predicted by the model and observed

in the data. Importantly, these predictions are made while adding no additional degrees of

freedom relative to the no-EBRD model; instead, we merely replace the default assumption

of no loss-aversion—i.e., λ= 1 for everybody—with an empirical population distribution

of λ estimated in a previous study.

At the same time, while our DR treatment is predicted to be EBRD-proof, a non-

negligible fraction of participants still choose dominated actions—actions that remain

dominated at any degree of loss aversion. We also find similar fractions of participants

choosing such actions in “strong student” problems under our other DA variants, where

the (parameter-constrained) EBRD model also predicts no such behavior. These findings

underscore the need for additional explanations, for example, along the lines of Li (2017)

and Gonczarowski et al. (2022).

Another important prediction of the EBRD model that our experiment confirms is that

while the fraction of such non-straightforward (NSF) behavior varies significantly across

both DA variants and matching problems, the fraction of costly NSF behavior does not vary

much across either. From a theoretical point of view, the intuition behind this prediction

is simple: for a fixed distribution of loss aversion λ, the EBRD model predicts more FOSD

violations the lower the probabilities of acceptance at higher-value schools. However, the

lower those probabilities, the lower the chance that such violations will end up costly.

From a policymaker’s point of view, one potential reaction is that there is little value in

reducing the prevalence of NSF if it is mainly bottom-line-outcome irrelevant. However,

such a reaction may overlook two nuances. First, in our data, NSF behavior does not only

decrease under DR; it also changes, and could have distributive consequences. The (reduced)
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NSF behavior that we find under DR—and that the EBRD model cannot explain—may

be consistent with, e.g., (potentially over-optimistic) subjects rejecting low-value offers

and expecting to get better ones. In contrast, EBRD-consistent NSF in the non-DR variants

is consistent with (potentially over-pessimistic) loss-averse subjects shying away from

applying to high-value schools.

Second, informal conversations with policymakers suggest that at least some of them

strongly view prevalent NSF behavior as a problem to be minimized, regardless of the

actual cost. For example, “leveling the playing field” and other equity arguments favoring

DA become more complicated when NSF behavior is prevalent. From that perspective,

reducing the actual incidence of NSF behavior is a goal in itself.

Finally, for policymakers, the question of implementation feasibility looms large—a

question that we do not address in this paper. By definition, dynamic implementations

of a matching mechanism require it to run for more extended periods, during which

participants are repeatedly asked to make decisions. For investigations like ours to have

real-world impact, progress will have to be made on whether and how to implement such

variants.
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Figure 5: NSF by ROL Type
(a) Theoretical Predictions (2 on Top): Classical & EBRD Preferences
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(c) Theoretical Predictions (3 on Top): Classical & EBRD Preferences
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Notes: Fraction of NSF ROLs where the 2nd (3rd) highest-valued school is the one ranked first (weak problems
only). Panels (a) and (c) present chosen NSF strategy predictions by problem type under Classical (downward
triangles) and EBRD (upward triangles) preferences. Panels (b) and (d) present the empirical shares. Error
bars: standard errors from a regression of NSF behavior on problem type, clustering at the individual level.
p-values: Wald tests.
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Figure 6: Alternative Measures
(a) Theoretical Predictions (Costly NSF): Classical & EBRD Preferences
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(c) Theoretical Predictions (Dynamically Observable NSF): Classical & EBRD Preferences
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Notes: Fraction of costly and dynamically observable NSF. Panels (a) and (c) present predictions for the share
of costly NSF and dynamically observable NSF by problem type under Classical (downward triangles) and
EBRD (upward triangles) preferences. Panels (b) and (d) present the empirical shares. Error bars: standard
errors from a regression of NSF behavior on problem type, clustering at the individual level. p-values: Wald
tests.
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Rustamdjan Hakimov and Dorothea Kübler. Experiments on centralized school choice

and college admissions: a survey. Experimental Economics, 24(2):434–488, July 2020. doi:

10.1007/s10683-020-09667-7. URL https://doi.org/10.1007/s10683-020-09667-7.

Avinatan Hassidim, Assaf Romm, and Ran I. Shorrer. The limits of incentives in economic

matching procedures. Management Science, 67(2):951–963, February 2021. doi: 10.1287/

mnsc.2020.3591. URL https://doi.org/10.1287/mnsc.2020.3591.

Alexander Karpov. A necessary and sufficient condition for uniqueness consistency in the

stable marriage matching problem. Economics Letters, 178:63–65, 2019. ISSN 0165-1765.

35

https://doi.org/10.1257/mic.20120027
https://doi.org/10.1257/mic.20120027
https://doi.org/10.1086/687476
https://doi.org/10.1086/687476
https://onlinelibrary.wiley.com/doi/abs/10.3982/ECTA15897
https://onlinelibrary.wiley.com/doi/abs/10.3982/ECTA15897
https://doi.org/10.3982/QE496
https://doi.org/10.3982/QE496
https://doi.org/10.1080/00029890.1962.11989827
https://doi.org/10.1080/00029890.1962.11989827
https://doi.org/10.1007/s10683-020-09667-7
https://doi.org/10.1287/mnsc.2020.3591


doi: https://doi.org/10.1016/j.econlet.2019.02.022. URL https://www.sciencedirect.

com/science/article/pii/S0165176519300679.

Flip Klijn, Joana Pais, and Marc Vorsatz. Static versus dynamic deferred acceptance

in school choice: Theory and experiment. Games and Economic Behavior, 113:147–

163, 2019. ISSN 0899-8256. doi: https://doi.org/10.1016/j.geb.2018.08.009. URL

https://www.sciencedirect.com/science/article/pii/S0899825618301453.
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