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Abstract 
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sustainable in equilibrium. This approach identifies the potential effect of multimarket contact 
independently of whether this potential is actually realized, giving rise to meaningful 
counterfactual exercises despite the presence of multiple equilibria. We derive analytical 
results that associate the potential impact of multimarket contact with a “symmetric 
positioning" property. We further establish the connection between this property and the 
structure of demand in the relevant industries, motivating demand estimation as a key step in 
the analysis of multimarket contact. We apply our model to an observed case of multimarket 
contact in the Israeli food sector. Our estimates indicate that, in the studied case, the potential 
effect of this contact on prices and profits is small. 
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1 Introduction

Multimarket contact occurs when the same set of competitors are present across multiple markets.

Economists have long been concerned with a potential adverse effect of such contact on the

intensity of competition. The economic theory underlying this effect was articulated in the

seminal article of Bernheim and Whinston (1990, hereafter BW90). Sustaining prices above their

competitive levels requires that Incentive Compatibility Constraints (ICC) hold, and multimarket

contact results in the aggregation of each firms’ constraints over markets. The question of interest

is whether this aggregation allows higher prices to be sustained in equilibrium.

The answer to this question depends in intricate fashions on market-specific cost and demand

parameters. We propose an empirical methodology that builds directly on this insight. We show

that the components of firms’ ICCs can be estimated given standard estimates of demand and

an assumed (or estimated) conduct that characterizes the Data Generating Process. We then

aggregate the estimated ICCs over the markets across which firms interact, and compare the set

of supra-competitive prices that can be sustained with multimarket contact to the set of prices

that can be sustained without it.

Importantly, this approach identifies the potential, rather than the actual, effect of multimarket

contact. This is a natural consequence of the use of Supergames of competitive interaction.

Supergame models typically have infinitely-many equilibria and so they do not uniquely predict

which price equilibrium will be played. Satisfying ICCs that are associated with a particular

price equilibrium is a necessary, but not a sufficient condition for this equilibrium to be played.1

If multimarket contact relaxes the ICCs, it therefore has the potential of supporting higher prices

— whether or not this potential is actually realized.

The extant empirical literature identifies the actual effect of observed changes in multimarket

contact on observed (or estimated) margins. Our approach complements this familiar paradigm

by providing a means of assessing the potential impact of multimarket contact even in cases

where in-sample variation in multimarket contact is not available.

In particular, our approach allows one to assess the potential effect of multimarket contact that

remains stable throughout the sample period. Another use for our method is to study the effect

of hypothetical multimarket contact. Suppose that firms a and b operate in industry 1 while

firms b and c operate in industry 2, and that firm a proposes to acquire firm c. This will create

multimarket contact as firms a and b would then compete in both industries. The hypothetical

merger can therefore affect prices despite having no impact on concentration in either industry.

Our approach can quantify the magnitude of this potential price effect.2

1For example, firms may engage in a competitive Nash-in-prices equilibrium even if their ICCs hold with respect to less competitive
outcomes.

2The issue of “conglomerate mergers” has a long history in the economics and antitrust literatures. See Ashenfelter, Hosken and
Weinberg (2014) for an historical perspective.
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Data and Identification requirements. The data that are necessary to implement our

approach are those used to estimate the demand for differentiated products following Berry,

Levinsohn and Pakes (1995, BLP). Namely, prices, quantities and product characteristics must

be observed in the markets where firms overlap. The conditions for identifying the potential effect

of multimarket contact match exactly those provided in Berry and Haile (2014) as sufficient for

identifying demand systems and the competitive conduct that characterizes the Data Generating

Process (DGP).

While we do not provide a formal identification argument, the intuition is that computing

the ICC requires the firm’s variable profit payoffs in three scenarios: on the equilibrium path,

in an optimal one-shot deviation from this path, and when firms revert to competitive pricing

following a deviation. Given demand estimates and a specific assumption (or identification) of

the competitive conduct in the observed data, one can back out the marginal costs and compute

variable profits under a wide range of scenarios — including these three.

Empirical strategy. Our method begins with demand estimation in the relevant industries.

The next logical step is to also estimate the industry’s conduct, allowing the computation of

marginal costs and of the ICCs. In our empirical implementation to the Israeli food sector, we

pursue a somewhat different approach: rather than estimating the competitive conduct charac-

terizing the DGP, we instead assume that the data were generated by the competitive benchmark,

i.e., Nash in prices. We then proceed to estimate the ICCs and explore whether multimarket

contact expands the range of less competitive equilibria that could be sustained in equilibrium.

This approach bypasses the thorny challenge of identifying the industry conduct that prevails

in the observed data, and leverages the fact that we study the potential, rather than the actual,

effect of multimarket contact on the intensity of competition.3 But in general, our approach is

compatible with either estimating the conduct characterizing the DGP, or with using different

assumptions regarding it, as may be suited for the application at hand.

Our model considers two markets (or industries) featuring the same two main competitors.

Each market also features a fringe of smaller competitors, assumed to act competitively.4 Our

goal is to estimate the extent to which the leading firms’ multimarket contact allows higher prices

to be sustained in equilibrium.

Adapting the stylized models of BW90 to an empirical context requires several modeling

choices. We use the Random Coefficient Logit model (BLP95) to describe the demand side

of the market. On the supply side, we model a Supergame where past actions are perfectly

observable before the next period play, and deviations from the behavior prescribed by the

equilibrium strategies result in grim-trigger reversions to the most competitive behavior: Nash

3For a recent application estimating conduct parameters in the differentiated goods context, see Michel and Weiergraeber (2018).
4This assumption can also be easily modified to allow firms that are only present in one of the industries to engage in less

competitive behavior.
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in prices. We also assume that firms are characterized by bounded rationality: in computing

the benefits and costs of deviation, they assume that current cost and demand conditions shall

persist indefinitely. This simplification leads to transparent conditions that mimic those familiar

from BW90, and does not appear to drive our empirical findings.

Unlike the setup in BW90, our empirical context features multi-product firms and so the

definition of “higher prices” requires some care. To succinctly capture this notion, we assume

that in the stage game, leading firms’ pricing is governed by a “conduct parameter” denoted

κ ∈ [0, 1]. As κ varies from zero to one, prices vary from their most competitive to their least

competitive values. The conduct parameter is used here merely as a mechanical device that

summarizes the distance of the market outcome from a competitive benchmark. In contrast

to familiar applications of conduct parameters, our framework models the supply side using a

repeated game rather than a static game, and is not subject to the Corts critique (Corts 1999).

We fix the firms’ discount factor at a nontrivial value — i.e., a value under which the least-

competitive behavior cannot be supported in a Subgame Perfect Nash Equilibrium (SPNE) of

the Supergame absent multimarket contact. We then estimate the sets of (κ1, κ2) vectors —

capturing the degree of departure from the competitive benchmark in both industries — that

can be sustained in equilibrium with, and without multimarket contact. We use these sets to

derive an estimate of the potential impact of multimarket contact on the intensity of competition.

Analytical results. While our method employs demand estimates to learn about the conse-

quences of multimarket contact, the map from demand primitives to the role played by multimar-

ket contact is far from obvious. This is particularly true in the presence of product differentiation,

since it is then “...diffcult to say anything general about the welfare effect of the movement from

the single-market outcomes to the multimarket solution” (BW90). We therefore provide not only

an estimation routine and empirical results in a particular application, but also a sequence of

analytical and simulation results that shed light on the relationship between demand primitives

and the competitive impact of multimarket contact.

We begin by establishing a property to which we refer as “symmetric positioning” as an

important driver of the competitive effect of multimarket contact. In the absence of this property,

the largest departure from competition absent multimarket contact is located on the frontier of

feasible departures with multimarket contact. When the symmetric positioning does not hold,

therefore, the scope of impact from multimarket contact is severely limited right at the gate.

Denoting the leading firms by a and b, “symmetric positioning” means that in one market, firm

a can satisfy its ICC at a higher conduct parameter value than firm b, while in the other market,

those roles are reversed. Intuitively, this property implies that slackness in ICCs can be allocated

across markets via aggregation, allowing multimarket contact to affect prices.5

5This property is related to the “symmetric advantage” property in BW90. The property defined in our paper is different as it
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The role played by the symmetric positioning property is established given shape restrictions

on firms’ flow profit functions. These shape restrictions are both consistent with the literature

(e.g., BW90) and are also testable. Simulation analysis shows that profit functions implied by

the Random Coefficient Logit (RCL) model of demand tend to satisfy these shape restrictions,

but do not always do so. It is therefore important to verify in empirical applications whether

the shape restrictions hold, as we do in our own application to the Israeli food sector.

The simulations also show that symmetric positioning is more likely to hold when each firm

enjoys a demand advantage in a different market — where by “demand advantage” we refer to the

situation where consumers value the firm’s brand more than its rival brand. This combination of

analytical and simulation results sharpens the intuition for the role played by demand primitives

in determining the competitive effect of multimarket contact. It therefore also helps motivate

how demand estimation informs the study of this competitive effect.

Empirical application. We take our approach to data from the Israeli food sector. We study

two categories — Packaged hummus Salad and Instant Coffee — where the same two firms are

the market leaders. Our estimates suggest that the potential effect of this multimarket contact

on the intensity of competition is small. We interpret this finding as stemming, among other

possible reasons, from the lack of a symmetric “demand advantage” across the two industries.

Following a brief literature review, section 2 presents the model. Section 3 presents the em-

pirical application, while section 4 concludes.

Relationship to the literature. The strategic role of multimarket contact has received

considerable attention. As reviewed in Evans and Kessides (1994, EK), some early analyses

include Edwards (1955, in Scherer, 1980) and Kahn (1961). Empirical work has generally found

multimarket contact to have a positive and significant impact on prices. EK94 exploit panel

data to document the effect of changes over time in airlines’ route overlaps, using fixed effects to

control for time-invariant route characteristics. They contrast their approach with earlier work

that focused on cross-sectional variation.6 Ciliberto and Williams (2014) study multimarket

contact in airline markets by estimating conduct parameters and explicitly relating them to

variation in the extent of cross-market relationships.7 Shim and Khwaga (2017) and Pus (2018)

relate conduct parameters to observed variation in multimarket contact in the retail lumber and

the freight industries, respectively.

In contrast to this literature, we do not exploit in-sample variation in the intensity of mul-

timarket contact, and instead take the theory of BW90 directly to data. To the best of our

knowledge, this is the first empirical study of multimarket contact to take this approach.

pertains directly to the ability to satisfy the ICCs rather than to a cost advantage.
6For example, Haggestad and Rhoades (1978), Whitehead (1978), Strickland (1984), Mester (1987), Feinberg and Sherman (1985),

and Gelfand and Spiller (1987).
7See also Ciliberto, Watkins and Williams (2018).

4



The theory literature on Supergames of competitive interaction is vast and a complete survey of

it is outside our scope. In these models, firms’ strategies prescribe adhering to supra-competitive

prices on the equilibrium path, and reverting to fierce price competition if deviations are de-

tected. A seminal contribution was made by Friedman (1971) who assumed that past actions are

perfectly observed and that deviations result in grim-trigger punishments of competitive (e.g.,

Cournot) pricing. Porter (1983) and Porter and Green (1984) allow for past actions that are not

directly observed by rivals, so that a realized low price does not necessarily indicate a deviation.

Rotemberg and Saloner (1986) introduce iid demand shocks and show that those are negatively

correlated with the sustainable price level. Abreu (1986, 1988) derives optimal punishments that

allow firms to sustain higher prices relative to simple grim-trigger mechanisms.

The idea of empirically estimating the components of firms’ ICCs within such Supergames

has been recently pursued by several authors. Goto and Iizuka (2016) estimate such quantities

in the medical services industry. Igami and Sugaya (2017) assess the stability of the 1990s

Vitamin cartels. Miller, Sheu and Weinberg (2018) estimate a price leadership model in the beer

industry, and refer to ongoing work by Fan and Sullivan (2018). Our paper, which has developed

independently of these contributions, shares some elements with those papers while focusing on

a different question: the strategic role of multimarket contact.

2 Model

The model is presented in three steps. Section 2.1 outlines the supergame framework. Section 2.2

adds shape restrictions on firms’ profit functions and establishes the role played by the symmetric

positioning property in determining the potential competitive impact of multimarket contact.

Section 2.3 embeds the Random coefficient Logit model of demand into the framework, and

reports simulations results that establish a bridge between the symmetric positioning property

and underlying demand primitives.

Taken together, these steps result in a theoretical framework that sheds light on the relationship

between underlying demand properties and the impact of multimarket contact, and can be taken

to data in the presence of differentiated products and multi-product firms, as we do below in the

case of the Israeli food sector.

2.1 The Supergame framework

Consider a Supergame involving two industries (or markets) denoted by m = 1, 2. The markets

feature product differentiation and multi-product firms. Two firms, denoted a and b, are present

in each of the markets m = 1, 2. In each market there are also additional (different) competitors

that are assumed to form a competitive fringe, noting that product differentiation keeps prices

5



above marginal costs even for those firms. The set of competitors in each of the two industries

is depicted in Figure 1.

Consistent with much of the theory literature surveyed above, we assume that past actions are

perfectly observed before the next period play.8 Deviations from equilibrium-path pricing result

in reversion to competitive pricing — i.e., Nash-Bertrand pricing — forever, ruling out more

sophisticated schemes such as the optimal punishments in Abreu (1986, 1988).Furthermore, and

again consistent with much of the literature, we maintain that marginal costs are constant in

output, and consider fixed costs, entry and exit decisions to be exogenous.9

The stage game. In stylized Supergame models, the stage game is often assumed to be iden-

tical over time — i.e., the same cost and demand conditions prevail in every period. This assump-

tion considerably facilitates the exposition, but is inconsistent with our empirically-motivated

framework that admits seasonality effects and other shocks that affect cost and demand.

To remedy this inconsistency, we refrain from assuming that the stage game is identical, but

instead assume that firms are characterized by bounded rationality: at every period, when com-

puting the discounted payoff streams from adhering to the equilibrium path, and from deviating,

they simplify the computation by assuming that current cost and demand conditions shall prevail

indefinitely.

The bounded rationality assumption has several benefits. First, it results in Incentive Compat-

ibility Constraints that look exactly like those in the relevant theory literature, and, in particular,

those in BW90. This results in an intuitive and transparent analysis of multimarket contact,

whereas allowing firms to compute predictions regarding future shocks would complicate the

math considerably. Second, the bounded rationality assumption is reasonable: firms are likely

to make simplified, approximate calculations in determining real-world actions.

In practice, the bounded rationality assumption results in different calculations of the frontier

of sustainable prices in every month. If this assumption was grossly misspecified, we might have

expected our calculations regarding the effect of multimarket contact to be sensitive to the month

in which they are performed. Our empirical analysis, however, yields the same qualitative (and

very similar quantitative) conclusions in all 43 sample months, suggesting that little is lost by

assuming away very complicated calculations on part of firms.

Another challenging aspect of real-world markets is the presence of multiproduct firms and

product differentiation. BW90 allow each firm to sell a single product in each market and focus

on homogeneous goods settings. When they do allow for product differentiation, they consider

symmetric differentiation and hence symmetric price equilibria in each market. Consequently,

8In our empirical application (price setting in packaged-goods industries, observed in monthly data) this appears reasonable: while
firms do not observe rivals’ pricing directly, they are likely to become aware, fairly quickly, that a rival has cut prices substantially.

9Our assumptions are ubiquitous not only in stylized theory models but also in the empirical implementations of Supergames
surveyed in the introduction.
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the objects of interest — the highest sustainable prices with and without multimarket contact

— are easy to define in their setup. In our empirical context, each firm sells a vector of non-

symmetrically differentiated products in each market. It is then not immediately clear how to

rank sustainable prices.

One could examine any vector of supra-competitive prices and compute the Incentive Compat-

ibility Constraints (ICCs) associated with it. Given the unlimited number of such possibilities,

we define a simple, one-dimensional statistic that captures, in each market, the distance between

the prices that can be sustained in an SPNE, and the competitive benchmark of Nash Bertrand

pricing. We denote this statistic as κm ∈ [0, 1] where m = 1, 2 correspond to the two markets.

We then compute the “frontiers” of vectors (κ1, κ2) that can be supported with and without

multimarket contact, and work out a practical method for comparing these frontiers.

In practice, we restrict firms’ strategies as follows. On the equilibrium path, pricing in each

market m = 1, 2 are determined “as if” firms were playing a static pricing game where each

firm maximizes its own flow payoff function given its rivals’ prices — but where firm a’s payoff

function places a weight of κm on the profits of firm b, and vice versa. Off the equilibrium path,

these firms revert to the most competitive pricing by setting κm = 0. Importantly, firms’ actual

payoff functions place no weight on rivals’ profits. The weight κ is merely a mechanical device

that helps us define increasing levels of supra-competitive prices in a simple fashion.

The conventional use of conduct parameters in the empirical literature treats them as an “as-

if” static model approximation to the true pricing behavior that may stem from a much more

complicated dynamic model (Bresnahan 1989). Our use of conduct parameters is quite different:

we study a Supergame, and use these parameters merely as a device that succinctly quantifies

deviations from competitive pricing. This avoids the typical challenges associated with the use

of conduct parameters. In particular, we do not estimate a conduct parameter model, and hence

the Corts critique (Corts 1999) does not apply. Nonetheless, restricting attention to price vectors

that are generated by this device does limit the scope of pricing possibilities that we can consider,

and we continue to investigate this issue in ongoing work.10

Formally, we denote by pκm the price vector set on the equilibrium path in each market m = 1, 2

and define it as follows.

Definition 1. On the equilibrium path, stage-game prices pκm are determined as follows. Firm

a’s price vector is given by:

pκma = argmaxpa
∑

j∈Ja,m

vj(pa, p
κm
−a) + κm

∑
j∈Jb,m

vj(pa, p
κm
−a),

10In recent work, Sullivan (2017) and Fan and Sullivan (2018) revisit the task of formally connecting static conduct parameters with
a Supergame framework. Their work suggests that static conduct parameter equilibria do not necessarily capture all Pareto-optimal
equilibria of the Supergame.
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where Jf,m denotes the set of products sold by firm f in market m, vj(·) denotes the variable

profit generated by product j given a vector of market prices, and pκm−a denotes the portion of

market m’s price vector that describes prices by firm a’s rivals. Similarly, firm b’s prices are

given by

pκmb = argmaxpb
∑
j∈Jb,m

vj(pb, p
κm
−b ) + κm

∑
j∈Ja,m

vj(pb, p
κm
−b ),

whereas the prices of any other firm f /∈ {a, b} are given by: pκmf = argmaxpf
∑

j∈Jf,m
vj(pf , p

κm
−f ).

Off the equilibrium path, i.e., following a deviation from the behavior prescribed above, all

firms act like Nash-Bertrand competitors, and the resulting price vector in market m is denoted

pNB,m. Each firm f ’s price vector pNB,mf then maximizes the expression
∑

j∈Jf,m
vj(pf , p

NB,m
−f ).

The Incentive Compatibility Constraints. Consider a set of strategies for all firms such

that market m’s prices are given by pκm , so long as a deviation did not occur in a previous period,

and by pNB,m otherwise. Those strategies constitute an SPNE of the supergame if an Incentive

Compatibility Constraint (ICC) holds for each of the firms a and b. Since all other firms are

simply Nash players given any history, ICCs are only defined for the two leading firms.11

Consider first the ICCs that obtain when firms do not internalize the multimarket contact.

Sustaining the price vector pκm in market m requires that, for each firm a and b, the discounted

stream of benefits from staying on the equilibrium path exceeds the benefits from a one-time

deviation, followed by a competitive reversion. Formally, for each market m = 1, 2, and each

firm f ∈ {a, b}, we define the following ICC, associated with a particular level of κm:

Πf,m(p̂κmf , pκm−f ) +
δf

1− δf
Πf,m(pNB,m) ≤ 1

1− δf
Πf,m(pκm), (1)

where Πf,m(p) =
∑

j∈Jf,m
vj(p) is firm f ’s flow variable profit given some price vector p. This is

the actual payoff of the firm, and it does not place any weight on the profit of a rival, stressing

the point that our framework uses the “profit weight” κm only as a mechanical device that

ranks supra-competitive profits in a well-defined fashion. Firm f ’s discount factor is denoted

by δf . For simplicity, we do not let it vary across the two markets in which it operates, though

this is not essential.12 The price vector p̂κmf = argmaxpfΠf,m(pf , p
κm
−f ) maximizes firm f ’s flow

payoff if it deviates from the behavior prescribed by the equilibrium strategy given that all other

firms adhere to the equilibrium strategies. Following such a deviation, the firm garners the

Nash-Bertrand payoffs indefinitely.

11As long as prices are strategic complements, given κm > 0, the prices of those other firms would also be higher than those that
would be set in a Nash-Bertrand equilibrium.

12See BW90 for a discussion of the possibility that a firm would apply different discount factors in different markets.
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The ICC can be manipulated to obtain the threshold discount factor δf,m(κm), defined as the

lowest value of the discount factor that satisfies the firm’s constraint:

δf ≥
Π̂f,m − Πf,m

Π̂f,m − ΠNB
f,m

≡ δf,m(κm), (2)

where we use the shorthand expressions Π̂f,m ≡ Πf,m(p̂κmf , pκm−f ), Πf,m ≡ Πf,m(pκm), and ΠNB
f,m ≡

Πf,m(pNB,m). In Section 2.2 we show, given additional structure, that the threshold δf,m(κm) is

increasing in κm: sustaining increasingly less competitive equilibria becomes more difficult in the

sense that it requires higher discount factors..

Note also that Π̂f,m,Πf,m and ΠNB
f,m correspond to profits evaluated given the prevailing cost

and demand conditions in the relevant period. Firms’ bounded rationality implies that these are

the relevant quantities in the firm’s ICC, since firms do not form expectations over future shocks

to cost and demand when determining whether to remain on the equilibrium path, or deviate,

in the current period, and instead set such expectations to zero.

Absent multimarket contact, sustaining specific levels (κ1, κ2) of supra-competitive prices in

the two markets m = 1, 2, respectively, requires that condition (1) holds at each of the two

markets m = 1, 2, and for each of the two firms f = a, b. So, in total, four ICCs need to hold.

We next allow firms a and b to internalize their multimarket contact, which, following BW90,

considerably changes the strategic interaction. Firm a may now expect a Nash-Bertrand rever-

sion in both markets m = 1, 2 if it were to deviate from the equilibrium in just one of them.

Anticipating this, firm a should deviate in both markets. Consequently, both the benefits and

the costs of deviation are aggregated over markets.

Formally, each firm f ∈ {a, b} now has a single ICC with respect to a (κ1, κ2) outcome:

∑
m=1,2

[
Πf,m(p̂κmf , pκm−f ) +

δf
1− δf

Πf,m(pNB,m)

]
≤
∑
m=1,2

1

1− δf
Πf,m(pκm). (3)

The impact of multimarket contact on the equilibrium conditions is summarized below.

Definition 2. If firms do not internalize their multimarket contact, the (κ1, κ2) outcome is said

to be supported in an SPNE of the Supergame if condition (1) holds for each market m = 1, 2, and

for each firm f ∈ {a, b}. If firms do internalize their multimarket contact, the (κ1, κ2) outcome

is supported if condition (3) holds for each firm f ∈ {a, b}.

Our analysis of multimarket contact shall compare the set of (κ1, κ2) vectors that can be

supported in equilibrium with multimarket contact, to the set of vectors that can be supported

without it. In the following section we impose shape restrictions on firms’ profit functions that

sharpen the characterization of these (κ1, κ2) sets.
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2.2 Additional structure and analytical results

We next place shape restrictions on firms’ profit functions and derive a sequence of analytical

results. These results not only help us to characterize the sets of supportable (κ1, κ2) vectors, but

also establish the role of a property to which we refer as “symmetric positioning” in determining

the potential impact of multimarket contact.

We place restrictions on the functions that describe firms’ flow variable profits on the equi-

librium path, and given an optimal one-shot deviation from that equilibrium, respectively. The

restrictions focus on the relationship between those profits and the equilibrium level of κm,

the divergence from competitive behavior on the equilibrium path. We therefore redefine firm

f ’s profit functions (with a slight abuse of notation) to explicitly depend on this parameter:

Πf,m(κ) ≡ Πf,m(pκ), Π̂f,m(κ) ≡ Πf,m(p̂κf , p
κ
−f ).

13

Assumption 1. (i) Π(κ), Π̂(κ) are twice continuously differentiable.

(ii) Π′(0) > 0.

(iii) Π′′(κ) < (1− δ)Π̂′′(κ) for all κ ∈ [0, 1].

(iv) The sum of profits for firms a and b in each market m = 1, 2, Πa,m(κ)+Πb,m(κ), is strictly

increasing and concave in κ.

Importantly, parts (iii) and (iv) are testable and we indeed verify that they hold in our

empirical application to the Israeli food sector. In fact, stronger requirements — the concavity

of Π(·) and the convexity of Π̂(·) — are satisfied in this application, and these stronger conditions

also hold in the analysis of BW90. The shape restrictions embodied in Assumption 1 are therefore

both testable, and in line with the theory literature.

Below we shall introduce the assumption that demand follows the Random Coefficient Logit

(RCL) model (Berry 1994, BLP 1995). Internal consistency of our analysis would therefore

require that the profit functions implied by RCL demand satisfy the shape restrictions of As-

sumption 1. While we verify that this is the case in our specific application, and in many

simulations, we also found simulation results where the RCL model generated profit functions

that violate these shape restrictions.

It is therefore important to test these restrictions when taking our model to data. When the

shape restrictions are violated, it is still possible to obtain empirical estimates of the potential

impact of multimarket contact using the methods developed below — but it would not be possible

to use the analytical results developed in the current section to understand what economic

primitives drive those estimates. Importantly, it is quite easy to verify whether the restrictions

hold in a specific empirical context, as we show in our empirical implementation below.

13This causes no difficulty as long as there is a one-to-one relationship between the price vector and κ. The uniqueness of the price
vector given a value of κ is only guaranteed under particular demand structures (see Caplin and Nalebuff (1991), Nocke and Schutz
(2018)). We follow a long tradition in the empirical IO literature and assume the uniqueness of pκ.
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We next use the shape restrictions of Assumption 1 to derive a sequence of analytical results.

We first define normalized profit functions that subtract the Nash-Bertrand profits: let πf,m(κ) =

Πf,m(κ)−Πf,m(0) and π̂f,m(κ) = Π̂f,m(κ)−Πf,m(0) for any value of κ, each firm f ∈ {a, b} and

each market m = 1, 2. Note that all of the restrictions on Π(·) and Π̂(·) in Assumption 1 hold

for the normalized functions π(·) and π̂(·) as well. Note also that, by definition, when κ = 0 we

have pNB = p0 = p̂0, hence: π(0) = π̂(0) = 0. Furthermore, we have that π′(0) = π̂′(0).

We further define the following function:

φf,m(κ) = πf,m(κ)− (1− δ)π̂f,m(κ),

allowing us to rewrite firm f ’s ICC in market m, absent multimarket contact (equation (1)) by:

φf,m(κm) ≥ 0. (4)

The firm’s ICC when multimarket contact is accounted for (equation (3)) can also be re-written:

φf,1(κ1) + φf,2(κ2) ≥ 0. (5)

Lemma 1. Given the Supergame model of section 2.1, and the additional structure in Assumption

1, the following results hold (omitting firm and market indices):

(i) limκ→0 δ(κ) = 0

(ii) δ′(κ) > 0 for all κ > 0 s.t. φ(κ) ≥ 0

(iii) φ(κ) single crosses zero.

Proof. (i) Using l’hoptial rule we get:

lim
κ→0

δ(κ) = lim
κ→0

π̂(κ)− π(κ)

π̂(κ)
= lim

κ→0
1− π(κ)

π̂(κ)
L
= lim

κ→0
1− π′(κ)

π̂′(κ)
= 1− 1 = 0 (6)

(ii) By Assumption 1(iii) φ is concave in κ. Also: δ′(κ) = π̂′(κ)π(κ)−π̂(κ)π′(κ)
π̂(κ)2

, hence δ′(κ) >

0 ⇐⇒ π̂′(κ)π(κ) − π̂(κ)π′(κ) > 0. Since π(0) = π̂(0) and π′(0) = π̂′(0), we get: π̂′(0)π(0) −
π̂(0)π′(0) = 0. Differentiating the numerator yields:

π̂′′(κ)π(κ) + π̂′(κ)π′(κ)− π̂′(κ)π′(κ)− π̂(κ)π′′(κ) = π̂′′(κ)π(κ)− π̂(κ)π′′(κ) ≥

π̂′′(κ)π̂(κ)(1− δ)− π̂(κ)π′′(κ) = (π̂′′(κ)(1− δ)− π′′(κ))π̂(κ) = −φ′′(κ)π̂(κ) > 0,
(7)

where the first (weak) inequality is due to the focus on κ values that satisfy the firm’s ICC, and

the last inequality is due to concavity of φ.

(iii) It is easy to verify that φ(0) = 0 and φ′(0) > 0. The concavity of φ thus implies that if

there exists κ̃ s.t. φ(κ̃) = 0, then φ′(κ) < 0 for every κ ≥ κ̃, hence φ single crosses zero.
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Lemma 1 carries several important takeaways. First, part (ii) implies that sustaining increasing

levels of departure from the competitive benchmark becomes increasingly difficult, in the concrete

sense of requiring higher levels of the discount factor. This feature motivates measuring the

potential impact of multimarket contact via its impact on the κ levels that can be sustained in

equilibrium given a fixed discount factor. Second, as long as δ > 0, some departure from the

competitive benchmark, however small, is always sustainable in equilibrium.

Third, part (iii) implies that if a firm’s ICC is sustained at a given level of κ, it will also be

sustained at any κ̃ < κ. This motivates the following definition of the supportable conduct levels

when firms do not internalize their multimarket contact.

Definition 3. Fix the discount factor at some level δ.

(i) denote by κf (δ) = (κf,1(δ), κf,2(δ)) the largest vector of conduct levels (κ1, κ2) ∈ [0, 1]2 in

each of the two markets that satisfies firm f ’s ICCs when it does not internalize the multimarket

contact (i.e., the largest κm values satisfying (1) for m = 1, 2). The single-crossing property from

Lemma 1 implies the uniqueness of κf (δ).

(ii) Let κm(δ) = min
f∈{a,b}

κf,m(δ). Denote by κ(δ) the largest vector (κ1, κ2) ∈ [0, 1]2 that satisfies

the ICCs of both firms f = a, b when they do not internalize the multimarket contact:

κ(δ) =

(
κ1(δ), κ2(δ)

)
Simply put, when firms do not internalize multimarket contact, κf (δ) captures the biggest

departure from competitive pricing that satisfies firm f ’s constraints, while κ(δ) is the largest

departure that satisfies both firms’ constraints — and is therefore sustainable in equilibrium.

This departure takes the minimum over the departures allowed at the individual firm level.

Taking the minimum is justified by the single crossing property established above — satisfying

a firm’s constraint at a given value of κ guarantees that it will be satisfied at any smaller value.

The conduct levels that are supportable absent multimarket contact are illustrated in Figure 2,

displaying conduct levels for market 1, κ1, on the horizontal axis, and conduct levels for market

2, κ2, on the horizontal axis. The origin (0, 0) corresponds to the Nash-Bertrand competitive

benchmark. The vector κa(δ) shows the largest κ values that satisfy firm a’s ICCs in both

markets, while κa(δ) shows the same for firm b.

In the figure, firm a is able to support a larger departure from the competitive benchmark

than firm b in market 2, while the reverse is true for market 1. We shall later define this

property — each firm being able to support a larger κ than its rival in a different market

— as “symmetric positioning.” Finally, the vector κ(δ) shows the largest departure from the

competitive benchmark that is feasible in equilibrium, since it satisfies the ICCs of both firms.

This is the vector defined in part (ii) of definition 3.
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We next define sets of κ vectors that satisfy the ICCs when multimarket contact is internalized.

Definition 4. With multimarket contact, and for a fixed level of the discount factor δ:

(i) For each firm f ∈ {a, b}, define the set of κ vectors that satisfy its individual ICC (3):

Sf (δ) =
{

(κ1, κ2) ∈ [0, 1]2 : φf,1(κ1) + φf,2(κ2) ≥ 0
}
,

(ii) Define the “frontier” for the set Sf (δ):

Ff (δ) =
{

(κ1, κ2) ∈ [0, 1]2 : φf,1(κ1) + φf,2(κ2) = 0 or κ1 = 1 or κ2 = 1
}

(iii) Define the set of κ vectors that satisfies both firm’s constraints:

S(δ) =
⋂

f∈{a,b}

{
Sf (δ)

}
(iv) Define the “frontier” of S(δ), F (δ), as the set of all (κ1, κ2) ∈ S(δ) that satisfy one of the

following conditions:

1. φa,1(κ1) + φa,2(κ2) = 0 or φb,1(κ1) + φb,2(κ2) = 0

2. κ1 = 1 or κ2 = 1

Lemma 2. (i) κf (δ) ∈ Ff (δ)
(ii) Sf (δ) is a compact and convex set.

(iii) Recalling the definition of (κf,1, κf,2) (Definition 3):

1. (κ1, κ2) ∈ Sf (δ) for every (κ1, κ2) that satisfies κ1 ≤ κf,1 and κ2 ≤ κf,2.

2. (κ1, κ2) /∈ Sf (δ) for every (κ1, κ2) that satisfies κ1 > κf,1 and κ2 > κf,2.

Proof. (i) When either κf,1 = 1 or κf,2 = 1 this is true by definition. When κf,1 < 1 and κf,2 < 1

we have:

φf,1(κf,1) = 0 and φf,2(κf,2) = 0⇒ φf,1(κf,1) + φf,2(κf,2) = 0⇒ κf (δ) ∈ Ff (δ) (8)

(ii) Since Sf (δ) ⊂ [0, 1]2, by continuity of φ(·) we get that Sf (δ) is compact. By Assumption 1

φ(·) is concave in κ, hence the sum of φf,1 and φf,2 is concave in (κ1, κ2) (and thus quasi-concave),

hence Sf (δ) is a convex set.

(iii) Part (1). By Lemma 1 we know that φf,m single crosses zero. Hence φf,1(κ1) ≥ 0 and

φf,2(κ2) ≥ 0, which implies φf,1(κ1) + φf,2(κ2) ≥ 0 and so (κ1, κ2) ∈ Sf (δ).
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Part (2). When either κf,1 = 1 or κf,2 = 1 this is true by definition (we restrict the analysis

to κ ∈ [0, 1]). When κf,1 < 1 and κf,2 < 1, then φf,m(κf,m) = 0 for m = 1, 2. The single-crossing

property thus implies that φf,m(κm) < 0, hence: φf,1(κ1) + φf,2(κ2) < 0⇒ (κ1, κ2) /∈ Sf (δ).

The implications of Lemma 2 are illustrated in Figure 3. On the left, the figure displays Sa(δ),

the set of κ vectors that satisfies firm a’s constraint — an ICC that aggregates over both markets,

along with its frontier Fa(δ). The figure shows that κa(δ), the largest vector that satisfies firm

a’s ICCs absent multimarket contact, lies on the Fa(δ) frontier as guaranteed by part (i) of the

Lemma. The figure also shows that the set Sa(δ) is compact and convex, per part (ii) of the

Lemma. The figure also shows the same information for firm b.

On the right, the figure displays the set S(δ) — the intersection of Sa(δ) and Sb(δ) — that

contains all vectors that satisfy both firms’ ICCs and are hence supportable when the two firms

internalize their multimarket contact. Also displayed is the frontier of this set, denoted F (δ) per

Definition 4.

The figure also displays the vector κ(δ), the largest supportable conduct vector absent mul-

timarket contact (see Definition 3). By virtue of Lemma 1, any vector lying below κ(δ) is also

supportable in that case. Note that κ(δ) appears in this figure to be located strictly inside the

frontier F (δ). In general, this need not be true. We shall later see that this happens if and only

if a symmetric positioning property holds.

Quantifying the potential impact of multimarket contact. Our analysis contrasts

the set of supportable departures from competitive pricing when firms do not internalize their

multimarket contact — all vectors smaller than κ(δ) in Figure 3 — with the set of supportable

departures available with multimarket contact, S(δ). Section 2.3 below will show how to compute

those sets given an estimated demand system.

The comparison of these sets emphasizes that we explore the potential impact of multimarket

contact on competition. With multimarket contact, any vector within the set S(δ) can be

supported in an SPNE. Without it, any vector κ̃ such that κ̃ ≤ κ(δ) can be supported. In both

cases we have infinitely-many equilibria. Absent an equilibrium selection mechanism, we cannot

determine the precise effect of multimarket contact. As a simple example, it is always possible

that firms end up at the competitive benchmark origin, κ = (0, 0), with or without multimarket

contact, in which case there is clearly no actual multimarket contact effect on competition.

Our approach is therefore only informative about the potential effect of multimarket contact.

As discussed above, this is a fundamental aspect of the Supergame framework, and an unavoidable

aspect of taking such a framework to data. In this sense, our approach is complementary to the

extant empirical literature on multimarket contact. While that literature uses observed variation

in multimarket contact to estimate its actual effect, we can explore its potential effect in cases
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where such variation is not available, or perform counterfactual analysis of multimarket contact

that does not actually exist in the data.

A practical challenge is to concisely summarize the potential impact of multimarket contact

on competition. To this end, we need a simple way of comparing the sets of κ values that can be

supported with and without this contact. Furthermore, the κ parameters are merely technical

devices. An appreciation of the economic impact of multimarket contact requires its expression

via economic quantities such as prices and profits.

We deal with both issues as follows. First, rather than comparing two sets of κ vectors, we

focus, in each set, on the vector that maximizes the joint profits for firms a and b — and compare

these two vectors. To this end, we first compute the conduct vector that maximizes this joint

profit with multimarket contact. Define this vector by:

κ̂(δ) = argmaxκ1,κ2
∑

f∈{a,b}

πf,1(κ1) + πf,2(κ2)

s.t.(κ1, κ2) ∈ S(δ).

(9)

We then compute prices and profits at κ̂(δ), and compare them to prices and profits at κ(δ),

the vector that maximizes joint profits absent multimarket contact. While other strategies could

be considered for the purpose of quantifying the gains from multimarket contact, we find this

one most intuitive.

The next Lemma establishes that κ̂(δ) is unique, and, as illustrated in Figure 3, lies on the

frontier of supportable conduct vectors given multimarket contact.

Lemma 3. (κ̂1, κ̂2) ∈ F (δ) and is unique.

Proof. Since by Assumption 1 total profits increase with κ in each market, by continuity of φf,m

we get (κ̂1, κ̂2) ∈ F (δ). We also have that S(δ) = Sa(δ) ∩ Sb(δ). Recalling from Lemma 2(ii)

that these sets are convex, and since the intersection of two convex sets in also convex, we get

that S(δ) is convex. By Assumption 1(iv), we get a maximization problem of a strictly concave

objective function over a compact and convex set, hence there exists a unique solution.

A practical implication of Lemma 3 is that we can restrict attention to the frontier of sup-

portable conduct vectors when searching for the one that maximizes the sum of profits for firm

a and firm b when multimarket contact is internalized.

Lemma 4. An Irrelevance Result: Assuming markets m = 1, 2 are identical (firms may differ

from one another), there are no potential gains from multimarket contact.

Appendix A provides a proof of this result, which is similar to the irrelevance result in BW90,

except that the result here does not require firms to be identical. While Lemma 4 tells us
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when multimarket contact carries zero potential gains to firms, it has a highly stylized flavor:

in an empirical setup, we never expect markets to be truly identical. The question of interest

is, therefore, what type of differences in primitives across markets give rise to substantial gains

from multimarket contact?

To better gauge this issue, we next define the concept of symmetric vs. asymmetric positioning

and establish its role in characterizing the potential gains from multimarket contact.

Definition 5. Given a fixed discount factor δ, firms a and b display symmetric positioning across

the two markets if one of the following conditions holds:

(i) κa,1(δ) > κb,1(δ) and κa,2(δ) < κb,2(δ)

(ii) κa,1(δ) < κb,1(δ) and κa,2(δ) > κb,2(δ)

Symmetric positioning implies that one firm can sustain a larger departure from competition

in one market (by virtue of satisfying its ICC at a less competitive regime) than its rival, whereas

the other firm enjoys this “advantage” in the other market. This is the case depicted in Figures 2-

3. Asymmetric positioning implies, instead, that one firm can sustain higher conduct parameters

in both markets relative to its rival.

Our main analytical result now follows:

Corollary 1. Firms a and b display asymmetric positioning if and only if κ(δ) ∈ F (δ).

Proof. Assume initially markets are in asymmetric positioning. Then by definition κf,1 ≤ κg,1

and κf,2 ≤ κg,2 for f, g ∈ a, b, thus: κ(δ) = κf (δ). By Lemma 2: κf (δ) ∈ Ff (δ) and κf (δ) ∈ Sg(δ).
Therefore, κf (δ) ∈ S(δ). By Definition 4(iv), κ(δ) ∈ F (δ).

Now assume symmetric positioning. Assume also WLOG κ1(δ) = κa,1 and κ2(δ) = κb,2. Then:

κb,1 > κa,1 and κa,2 > κb,2, which by Lemma 2(iii) implies κ(δ) /∈ F1(δ)
⋃
F2(δ)⇒ κ(δ) /∈ F (δ).

The significance of Corollary 1 is the following: when firms display asymmetric positioning, the

least-competitive conduct vector supportable when they do not internalize multimarket contact,

κ(δ), lies on the frontier of the supportable vectors when firms do internalize it. This implies

a limited scope for a contribution of multimarket contact to profits: that contribution can then

only be realized via movements along the frontier, rather via movements to the frontier.

In contrast, with symmetric positioning, the supportable κ(δ) vector in the absence of mul-

timarket contact lies strictly inside the F (δ) frontier, suggesting a more substantial scope for

firms’ gains from such contact. As already noted above, this situation is illustrated in Figure 3.

Corollary 1 provides guidance regarding the sources of firms’ potential gains from multimarket

contact. However, it is still not clear, at this point, how to connect the symmetric positioning

property with underlying economic primitives, and, specifically, those associated with the demand
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system. Absence such connection, it will be difficult to appreciate intuitively how an estimated

demand system helps one uncover the potential gains from multimarket contact.

In the next subsection we complete the model description by addressing these issues. We first

introduce the final building block of our framework: a model for the demand side. We then

explore, via simulations, how demand primitives within the RCL model drive the presence, or

lack thereof, of the symmetric positioning property. Along the way, we also show how to test the

shape restrictions of Assumption 1 given demand parameter values.

2.3 Demand

The Random Coefficient Logit model (Berry 1994, BLP 1995) is the canonical econometric

framework for modeling and estimating differentiated-product demand systems. In this section,

we briefly review the model, and show how its estimated parameters can be used to infer the

components of the firms’ ICCs, enabling our analysis of the potential impact of multimarket

contact. We also demonstrate, via simulation, the relevance of the information embedded in the

estimated demand model to the multimarket contact analysis.

In a given industry m ∈ {1, 2}, the indirect utility function of consumer i from product j,

omitting the industry index, is given by:

uij = xjβi − αipj + ξj + εij, (10)

where xj is a vector of product characteristics, pj is the product’s price, and ξj captures the

value of product characteristics that are unobserved to the econometrician, but are observed by

consumers and firms. The parameters βi are random utility weights placed by consumers on the

observed product characteristics, while αi represents the heterogeneous price sensitivity. The

idiosyncratic term εij has the familiar Type-I Extreme Value distribution.

Recall that each of the two firms a and b has a portfolio of differentiated products in each of

the two industries. Additional multi-product firms are also present in each industry. Consumers

can also choose the “outside option” of not consuming any product from the relevant industry.

We follow the standard normalization for the utility from the outside option: ui0 = εi0.

With normally-distributed random coefficients, the utility function can be re-written as:

uij(ζi, xj, pj, ξj; θ) = xjβ + αpj + ξj︸ ︷︷ ︸
ψj

+σppjν
p
i +

K∑
k=1

σkxkjv
k
i︸ ︷︷ ︸

µij

+εij, (11)

where ζi ≡ (vi, {εij}j∈J) are the idiosyncratic utility shifters, with vi being a vector of standard-

normal variables (assumed IID across both consumers and product characteristics). The pa-
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rameter σp captures taste heterogeneity with respect to price. We separate the utility into a

mean-utility component ψj, and a household-specific term µij + εij. Defining θ2 ≡ (α, σ′)′ and

conditioning on ψjt, the utility function can be expressed as uij(ζi, xj, pj, ψj; θ2). The demand

parameters are θ = (β′, α, σ′)′.

Applying the market share equation (Berry 1994) we obtain the market share of product j,

sj(x, p, ψ, v; θ2) =

∫
exp[ψj + µij(xj, pj, vi; θ2)]

1 +
∑

m∈J exp[ψm + µim(xm, pm, vi; θ2)]
dPν(νi). (12)

The parameters θ can be estimated via GMM as is standard in the literature (BLP95). We

provide additional details on estimation in the empirical application section below.

Computing firms’ ICCs given an estimate θ̂. Given estimates of the demand parameters

θ, we can compute margins and variable profits under a wide range of competitive scenarios. As

familiar, Nash-Bertrand margins are implied by the system of First-Order Conditions:

p−mc =

(
Ω� S(p; θ)

)−1

s(p; θ), (13)

where Ω is the block-diagonal Ownership matrix satisfying Ωjk = 1 if goods j, k are produced by

the same firm, and zero otherwise. The vector s contains market shares that are evaluated via a

simulation estimator for (12), given prices p and the estimate θ̂. The matrix S contains market

share derivatives that are similarly evaluated via simulation.

Consistent with our subsequent empirical analysis, we assume that the data were generated

by this competitive behavior, and use (13) to back out the marginal costs mc given observed

prices p, observed market shares s, and the estimated θ̂. We also obtain a direct estimate of

Π(0), firms’ variable profits under this Nash-Bertrand competitive benchmark. Recall that this

is just one of many possible strategies with respect to the treatment of the true DGP.14

Placing some value 0 < κ ≤ 1 on the off-(block) diagonal elements of Ω, the same FOCs can be

used to evaluate how prices and margins would look like if firms switched into an SPNE where,

on the equilibrium path, they move away from the competitive pricing by an extent captured

by κ. This provides an estimate of the variable profits Π(κ) on the equilibrium path, if firms

were indeed to switch to that equilibrium. Finally, we numerically solve for each firm’s optimal

deviation from that equilibrium and obtain an estimate of the deviation payoffs Π̂(κ).

Given these quantities, and a “non-trivial” value of the discount factor δ — one that does not

support the least competitive equilibrium, κ = 1, in either market, absent multimarket contact —

we can evaluate the supportable departures from the competitive benchmark, with and without

multimarket contact, by calculating κ(δ) and F (δ) as defined in section 2.2.
14For example, one may obtain a measure of the true intensity of competition by calibrating it using crude data on margins

(Bjornerstedt and Verboven 2016, Eizenberg, Lach and Yiftach 2021), or perform the analysis of multimarket contact under different
assumptions regarding the DGP to obtain a sense of robustness.
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The calculation of κ(δ) and F (δ) involves some additional details. In particular, counterfactual

prices and margins need to be obtained at many levels of κ ∈ [0, 1] so that the largest κ that sat-

isfies the ICCs can be numerically obtained. In practice, those are computed over a discrete grid

of κ values, and that grid is then used to generate polynomial approximations of the underlying

functions. Computing counterfactual price equilibria also involves some computational details.

We expand on those computational aspects in Appendix B.

Simulating the model. Leading to the empirical analyses in section 3 below, we conduct a

series of simulations of the model with several goals in mind. First, we examine whether the shape

restrictions placed on the profit functions in Assumption 1 are maintained when the functions are

generated by a Random Coefficient Logit (RCL) model of demand. Second, by carefully altering

the parameters of the demand system, we seek guidance regarding the underlying features of

demand that determine the potential impact of multimarket contact.

Complete details regarding the simulations are available in Appendix C. The main insights

from the simulations are the following:

1. The shape restrictions of Assumption 1 are often, but not always, maintained in simulations

of the RCL model. Therefore one should verify whether these restrictions hold at the

estimated parameter values θ̂ when taking the model to data. Appendix C shows how to

implement this verification in practice.

2. Whether symmetric, or asymmetric positioning holds depends on demand parameters. This

is the concrete sense in which demand estimation informs the study of multimarket contact.

3. Fixing a specific industry, m = 1 or m = 2, and holding all other parameters fixed, increasing

the value of either the mean α or the standard deviation σp of consumers’ price sensitivity

affects the two firms’ ICCs in opposite directions. That is, for a fixed level of the discount

factor, it allows one firm’s market-specific ICC (equation (1)) to hold at a higher level of κ,

and the other firm’s ICC to hold at a lower level of that parameter.

4. Again fixing the discount factor and the industry, increasing the mean utility or the standard

deviation associated with one firm’s brand dummy, holding all other parameters fixed, allows

this firm’s ICC to hold at a higher conduct level κ, while lowering the maximal κ level that

sustains the ICC of the other firm.

The third finding is of particular interest. It suggests that if one firm enjoys strong brand

preferences in industry 1, while the other firm enjoys such advantages in industry 2, we are more

likely to witness symmetric positioning in the sense of Definition 5. By Corollary 1 we are then

more likely, thought not guaranteed, to see substantial gains from multimarket contact.
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The simulations therefore establish a connection between underlying demand primitives, on

the one hand, and the potential impact of multimarket contact, on the other hand. If firms

a and b each enjoy a “demand advantage” over the other in a different market — where “de-

mand advantage” is defined as having stronger brand preferences compared to the rival — then

multimarket contact is more likely to generate considerable gains. This sharpens the intuition

underlying our approach, since it clarifies at least one sense in which estimating the demand

systems in both industries can help learn about the scope of the multimarket contact effect.

3 Empirical application: the food sector

We now take the model developed in section 2 to data via an application to the Israeli food

sector, focusing on packaged goods sold at supermarkets. Our application involves the Packaged

Hummus Salad and Instant Coffee categories. Both categories share the same two prominent

competitors, but each category features additional, different competitors. Those categories there-

fore match the situation depicted qualitatively in Figure 1, and the framework developed above.

Data. The data come from Nielsen and cover the two product categories mentioned above.

These data are monthly and pertain to the 43 months from January 2012 to July 2015. The level

of observation is UPC-category-month, where the information includes the UPC’s name, from

which we derive important information regarding characteristics. We also observe the brand

name and the manufacturer, as well as total sales in both monetary terms, and in units. We

compute the monthly average price by dividing total sales revenue by quantity.

We describe our analysis in two stages. First, we present the demand modeling and estimation

results for each of the two categories. Second, we employ the methodology developed above to

make inference on the potential impact of multimarket contact across the two categories.

Demand estimates: Packaged Hummus Salad. We model the demand in this category

via the Random Coefficient Logit framework introduced above. The product characteristics x

included in the utility function are brand dummies, 42 month dummies, and dummy variables for

product characteristics. Examples of such characteristics are “spicy,” pine nuts, masabacha (a

middle eastern condiment), and tahini (relating to the presence of extra tahini in the product).

The presence of such product features was determined by mining the text of the product name

at the UPC level. Random coefficients were allowed on price, and on brand dummies for firms a

and b.

We aggregate the UPCs up to unique combinations of brand, month and the characteristics,

yielding a total of 2,031 observations over the 43 sample months. The market size was determined

by considering the potential consumption of all prepared (chilled) salads. Denoting the month-t

aggregate potential consumption by Mt, product j’s market share was computed by dividing the
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total quantity sold qjt by Mt. To arrive at Mt, we used a variety of media sources to determine:

the typical annual consumption of Hummus per person, the share of Hummus consumption out

of total consumption of chilled salads, and the population size.

The characteristics space is discrete rather than continuous, prohibiting the employment of the

differentiation instruments proposed by Gandhi and Houde (2016) to address the endogeneity

of prices. We nonetheless employ a battery of useful instruments. First, we use the number of

competing products with identical characteristics. Those should affect markups, and therefore

prices, consistent with Berry, Levinsohn and Pakes (1995) and the identification results in Berry

and Haile (2014).

Second, we use cost shifters as instruments. In particular, we include interactions of the world

chickpea price with the pine nut, tahini and “other condiments” characteristics, and interactions

of the VAT rate with dummy variables for the leading producers and for the “masabacha,”

“spicy” and “cress” characteristics.15

Finally, we exploit a discrete shift in the regulation of the Israeli food sector in January 2015,

when the “Food Law” went into effect. This law placed substantial restrictions on the ability

of large suppliers, as defined in the law, to engage in Retail Price Maintenance (RPM) or to

control the placement of products on retailers’ shelves. We interact a post-January 2015 dummy

variable with leading firm dummies, thereby allowing the pricing strategies of different firms

to be differentially affected by the law.16 In total, we use 13 excluded instruments, generating

over-identifying restrictions, noting that we have three random coefficients.

Estimation results are reported in Table 1. Generally speaking, coefficients on product char-

acteristics and on brand dummy variables (left panel) are precisely estimated, and so are the

price sensitivity parameters α and σp.

Demand estimates: Instant Coffee. To model demand in this category, we again define

product characteristics based on the presence of particular traits as evident in the product name

(examples being “decaff,” “frozen,” and “dry”) that are included in the utility function along

with brand and month dummies. We again aggregate the UPCs up to unique combinations of

brand, month and the characteristics. The outside option was defined as the consumption of

Black Coffee and Tea.

While we do not impose supply-side moments, our analysis requires that the estimated demand

elasticities imply non-negative marginal costs for all products at all possible conduct modes. To

this end, we found it necessary to drop from our sample the six most expensive observations, or

15The VAT rate at the beginning of the sample period was 16 percent. It was increased to 17 percent on September 1st, 2012, and
was then increased again, to 18 percent, on June 2nd, 2013, where it stayed through the end of our sample period. Source: the Israeli
Tax Administration (click here).

16The “Food Law” was a response to a major public protest in 2011 that prompted the government to seek strategies to reduce
the cost of living. Source: Globes, an Israeli media outlet, May 2018 (click here).
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0.4% of the original observations, resulting in a sample size of 1,515.17

Random coefficients were again allowed on price and on the leading brand dummies. In-

strumental variables included interactions of various brand dummies with cost shifters such as

the minimum wage, the Israeli company tax, and the global price of raw coffee (for non-decaff

products only). Various brand dummies were also interacted with the exchange rate (Euro for

NIS), the post-food law dummy variable, the firms’ revenue in other categories (computed from

market-level data, of the same nature as described above, for 40 categories of the Israeli food

sector), and the global price of sugar. In total, this yielded 14 excluded instruments. Estimation

results are reported in Table 2.

Estimating the potential impact of multimarket contact. To analyze the potential

effect of this multimarket contact on prices, we follow the model of Section 2. In particular, we

maintain the assumption that the behavior observed in the data fits the competitive benchmark

with κ = 0, i.e., that the data were generated by Nash-Bertrand competition. We then ask

whether less competitive pricing equilibria could potentially be sustained, and whether multi-

market contact expands the set of such sustainable outcomes.

Our approach requires fixing a “nontrivial” value for firms’ discount factor: one that does not

support the least competitive equilibrium in the absence of multimarket contact. This level is

fixed at δ = 0.15, a much lower value than that set in standard macroeconomic models. As

Rotemberg and Saloner (1986) note, the threshold discount factor that satisfies ICCs should be

low in models that assume grim-trigger responses to deviations from the equilibrium, as opposed

to models that allow such responses to last for a finite number of periods.

In other words, a more realistic model with a finite response phase would correspond to higher

discount factor levels. Following much of the literature, and for simplicity, we maintain the

infinite-horizon nature of the competitive reversion, acknowledging that this produces artificially

low threshold discount factors. Note that our goal is not to estimate the discount factor but

rather to obtain some measure of the potential effect of multimarket contact.

Results: supportable equilibria with and without multimarket contact. Figure 4

provides a graphical representation of each firm’s ICCs, with and without accounting for multi-

market contact. The figure pertains to the analysis as performed in a particular month (t = 7).

Recall that in each month, firms are assumed to evaluate the benefits of staying on the equilib-

rium path, versus those of deviating from it, and simplify their calculations by assuming that

current cost and demand conditions shall prevail indefinitely. As a consequence, our estimates

of the supportable κ levels depend on the month in which the calculation is performed.

The left-hand panel of Figure 4 displays firm a’s individual constraints. The vertical (horizon-

17We also found that including specific brand dummies, but not others, was useful for obtaining precise estimates. Fine tuning of
the demand estimation in this category is ongoing. Importantly, those modeling choices appear to have little effect on the economic
quantities of interest such as elasticities and markups.
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tal) axis pertains to values of κ ranging from 0 to 1 in the Hummus (Coffee) market, respectively.

Recall that per our assumption, firms’ actual behavior in the data follows the competitive bench-

mark which corresponds to the origin with κhummus = κcoffee = 0.

The blue dot corresponds to κa(δ), per Definition 3. This vector shows the largest (κhummus, κcoffee)

levels that satisfy firm a’s ICC in each market, ignoring multimarket contact. The green curve

represents the Fa(δ) frontier of (κcoffee, κhummus) vectors that satisfy firm a’s combined ICC when

it does internalize the multimarket contact (see Definition 4). The presence of the blue dot on

the Fa(δ) frontier is not a coincidence: it is guaranteed by Lemma 2(i). The right-hand panel

shows the same information for firm b (with the frontier Fb(δ) shown in yellow).

An important insight from Figure 4 is that the symmetric positioning property (Definition 5)

holds in our application. Comparing the “blue dots” in those two figures, we see that in the

Hummus market, absent multimarket contact, firm a’s (b’s) ICC sustains a κ value of approxi-

mately 0.55 (0.20), respectively. In the coffee market, the supportable κ values are about 0.2 for

firm a, and 0.6 for firm b. Simply put: in each market, a different firm can sustain a larger κ

value than its rival.

While Figure 4 provides useful information on each firm’s individual ICCs, it is only when the

constraints of both firms are satisfied at a particular vector (κcoffee, κhummus) that this vector can

be said to be supported in an SPNE of the Supergame. So, to appreciate the potential impact

of multimarket contact, we need to examine the intersection of these constraints, presented next

in Figure 5.

The blue dot in Figure 5 is κ(δ): the largest conduct vector that can be supported in an SPNE

when firms do not internalize their multimarket contact. As shown in Definition (3), this vector

is given by taking, in each market, the minimum of the largest κ values that satisfy the two firm’s

individual ICCs (i.e., the blue dots of Figure 4). The frontiers Fa(δ) (green curve) and Fb(δ)

(yellow curve) from Figure 4 are presented here again.18 The combined frontier F (δ) (Definition

4) is the boundary of S(δ), i.e., it is the boundary of the set of vectors that lie inside both the

green the yellow curves.

Note that the blue dot, κ(δ), is inside the frontier F (δ), rather than on it, i.e., κ(δ) /∈ F (δ).

This follows directly from Corollary 1, given that the symmetric positioning property holds as we

have seen above. The distance between κ(δ) — the largest discrepancy from competitive pricing

in the absence of multimarket contact — and the frontier F (δ) captures the potential impact of

multimarket contact on the intensity of competition.

It remains to translate this distance into clear economic terms: prices and profits. Following

the methodology laid out in section 2, we compute (κ̂1(δ), κ̂2(δ)): the vector, among all those

that can be supported in an SPNE given multimarket contact, that maximizes the sum of both

18Given the different scale, these curves may appear to be visibly different than those displayed in Figure 4, but the two figures
present exactly the same curves.

23



firms’ profits over the two markets. This vector, defined in (9), is indicated in the figure by the

red dot. Consistent with Lemma 3, the red dot is unique and rests on the F (δ) frontier.19

We next compute equilibrium prices and profits at this “red dot” and compare them to prices

and profits at the “blue dot” in each of the 43 month-specific analyses, t = 1, ..., 43. Table

3 shows the percentage difference in profits between κ(δ) (“blue dot,” capturing the largest

combined profits for the two firms absent multimarket contact) and κ̂(δ) (“red dot,” capturing

the largest combined profits with multimarket contact). The maximum impact over the 43

sample months is about 0.5 percent, whether we look at firm a’s profits, firm b’s profits, or their

combined profits. These calculations reveal that the potential impact of multimarket contact is

small in the studied application.

Table 3 also shows that the profit impact does not vary that much across the 43 month-specific

analyses. This is important: remember that we perform our analysis in each month separately,

each time assuming that firms ignore any future changes to cost or demand when calculating the

benefits of adhering to the equilibrium path vs. deviating from it. If violations of this bounded

rationality assumption were quantitatively important, we would have expected the profit impact

to vary widely among the 43 different calculations. Reassuringly, this does not happen.

Table 4 completes the picture by displaying the potential impact of multimarket contact on

prices. In each of the 43 month-specific analyses we compute the potential impact on each

category’s sales-weighted average price. As with profits, this potential impact is small, and does

not vary widely across months. The maximum (over the 43 months) change is 0.6 percent (0.77

percent) for the Packaged Hummus Salad and the Instant Coffee categories, respectively.

While the impact on both prices and profits does not vary widely across the 43 month-specific

analyses, it is of interest to inspect this variation from another perspective. The impact is always

very small, but Tables 3-4 show that on a couple of instances, it drops very close to zero. Recall

that a near-zero effect is particularly likely with asymmetric positioning, since the scope of the

effect is considerably limited in that case. One may expect, therefore, that the near-zero values

correspond to month-specific analyses that cross into the asymmetric positioning territory.

To explore this conjecture, we define a quantitative index of the degree of symmetric (or

asymmetric) positioning, to which we refer as a “symmetry indicator”:

(
κa,1(δ)− κb,1(δ)

)
·
(
κa,2(δ)− κb,2(δ)

)
.

When the symmetry indicator takes positive values, the same firm (either a or b) enjoys an

“advantage” in both markets, where by “advantage” we refer to the ability to satisfy the firm’s

market-specific ICC at a higher level of κ. This means that asymmetric positioning holds. When

the index takes negative values, it means that each firm enjoys the “advantage” in a different

19The figure also presents an “iso-profit” curve pertaining to the aggregated profits of the two firms over the two industries.
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market, implying symmetric positioning. The magnitude of the index in absolute value informs

us, additionally, regarding the magnitude of this effect.

Figure 6 provides a scatter plot over the 43 month-specific analyses. The value of the symmetry

indicator is displayed on the horizontal axis, and the potential gain from multimarket contact

(computed as the potential contribution to the firms’ combined profit, in percentage terms) is

on the vertical axis. Two insights emerge: first, there is only one month where firms display

asymmetric positioning, and, as expected, the gains are near-zero in this case. Second, we

observe a negative slope: the greater is the degree of symmetric positioning, the larger are the

potential gains from multimarket contact.

Figure 6 highlights the importance of the symmetric positioning property in determining the

scope of the potential effect of multimarket contact. This is consistent with Corollary 1. In fact,

along the way, we have seen that our analytical results (section 2.2) are verified in our empirical

application. For example, we have seen in Figure 4 that κf (δ) ∈ Ffδ), as implied by Lemma 2(i);

in Figure 5 that (κ̂1, κ̂2) ∈ F (δ) per Lemma 3; and again in Figure 5, that symmetric positioning

results in κ(δ) /∈ F (δ) per Corollary 1.

Recall that these analytical results were obtained given high-level shape restrictions on profit

functions in Assumption 1. In our empirical application, we are able to verify that those shape

restrictions hold in the same fashion as we did in the simulation analysis (see Appendix C for

details). In fact, in both the Hummus and the Coffee categories, and in each of the 43 months, we

have verified that a stronger restriction holds: profits on the equilibrium path (deviation profits)

are concave (convex) in κ. All analytical results should then hold in the empirical application —

and we have seen, indeed, that this is the case.

What might explain the small potential effect of multimarket contact? Since the assumptions

of section 2 hold in our empirical application, we can use the analytical results of that section

to shed light on this issue. The small magnitude could imply that symmetric positioning, while

present in the studied case (as demonstrated visibly above), is not strong.

The simulation exercises discussed in section 2.3 suggested that one way to generate strong

symmetric positioning is for each firm to enjoy a substantial “demand advantage” over its main

rival in a different category. In our application, the estimated coefficients on firms a and b’s

brand dummies do not reveal such a pattern. At least in this sense, the small estimated effect

of multimarket contact is not surprising.

4 Concluding remarks and additional applications

This paper studies the impact of multimarket contact on the intensity of competition. In contrast

to the extant empirical literature, we do not estimate the causal effect of multimarket contact
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by exploiting observed variation in it. Instead, we take the theory of Bernheim and Whinston

(1990) to data to evaluate the potential effect of such contact.

This theory clarifies the strategic effect of multimarket contact on firms’ Incentive Compat-

ibility Constraints. We show how to estimate the components of firms’ ICCs, allowing us to

aggregate them over the markets where firms interact. We then directly check whether this

aggregation allows higher prices and profits to be sustained in equilibrium.

The empirical analysis reveals that the potential impact of multimarket contact in two cat-

egories of the Israeli food sector is small. Our analytical framework clarifies what primitive

features of the demand system can give rise to substantial gains from multimarket contact. By

estimating the demand in the relevant categories, we allow such primitives to inform the analysis

of the competitive impact of multimarket contact. The analytical results therefore guide and

help in the interpretation of the empirical estimates, and provide an intuition for the small mag-

nitude observed in our empirical analysis. In particular, we associate this finding with the lack

of a symmetric “demand advantage” whereby each brand would have enjoyed stronger consumer

preferences in a different category.

Additional applications and extensions. In addition to studying multimarket contact that

is present in the data, as performed above, our framework also allows the study of multimarket

contact that could be established via hypothetical cross-category mergers.

The idea is depicted in Figure 7: suppose that in the data, firms a and b are the major

competitors in market 1, whereas firms b and c are the major competitors in market 2. Now,

however, firm a proposes to acquire firm c. This hypothetical merger does not alter the concen-

tration level (measured by, say, the HHI) in either market. The antitrust authority may still be

concerned, however, that the resulting multimarket contact could hamper competition across the

two markets. Our framework can be used to evaluate that potential impact, allowing regulators

to examine this specific theory of harm.

We can accommodate this scenario by re-labeling some of the terms used above. In the

analysis presented in this paper, we compared the largest departure from competitive pricing

that is available when firms do not internalize their multimarket contact, κ(δ), to the frontier

of possible departures available when they do internalize it, F (δ). We can interpret the merger

depicted in Figure 7 as follows. Initially, multimarket contact is absent — so κ(δ), computed

exactly as shown above, captures the largest departure from competitive pricing that can be

supported in equilibrium. Following the merger, multimarket contact is established, opening the

frontier of possibilities F (δ) — which ,again, would be computed in exactly the same fashion.20

Additional extensions of the work presented in this paper include augmenting the Supergame

20In a hypothetical merger analysis, one may wish to consider the possibility that firms a and c have different discount factors.
This may give rise to a range of predictions, based on different underlying assumptions on the discrepancy between these two discount
factors, pre-merger, and on the post-merger discount factor of the merged firm.
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to incorporate more sophisticated mechanisms such as asymmetric information and complex

treatment of time-series variation in cost and demand conditions. We leave such extensions to

future work.
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A Proof of Lemma 4

Proof of Lemma 4. When markets are identical, κf,1 = κf,2 for f = a, b. Hence κ(δ) = κa(δ) or

κ(δ) = κb(δ). Assume WLOG κ(δ) = κa(δ). If κa,1 = κa,2 = 1 then obviously there are no gains

from multimarket contact. Assume κa,1 < 1. Then firms are in “asymmetric positioning,” hence

by Corollary 1 κ(δ) ∈ F (δ). Since φa,m(κ) is differentiable and κa,1 < κa,1 ≤ 1, we get that the

firm’s combined frontier F (δ) is differentiable at κ(δ), with a slope equal to −1 (by the identical

market assumption, F (δ) is symmetric about the 45◦ line). Since the slope of the iso-profit curve

of the objective function of multimarket contact profits at κ(δ) is: −π′a,1(κ1(δ))+π′b,1(κ1(δ))

π′a,2(κ2(δ))+π′b,2(κ2(δ))
= −1 as

well, by convexity of S(δ) this is a necessary and sufficient condition for the firm’s maximization

problem in (9). We get κ(δ) = κ̂(δ), and thus there are no gains from multimarket contact.

B Computational details

Counterfactual Prices. Recall that the pricing First Order Conditions are:

p−mc =

(
Ω� S(p; θ)

)−1

s(p) (B.1)

As described in section 2.3, these conditions allow us first to back out marginal costs, and

then calculate counterfactual price vectors corresponding to a wide range competitive schemes,

modeled via changes to off-diagonal elements in the ownership matrix Ω. A straightforward

approach for calculating these counterfactual prices is the following:

1. Begin with an initial guess for prices p0

2. Evaluate the right hand side of (B.1) at the estimated θ̂ and p0

3. Update the price vector using:

p1 = mc+

(
Ω� S(p0; θ̂)

)−1

s(p0) (B.2)

4. Iterate until convergence

We found, however, that this approach often failed to converge to a price vector that solves

(B.1). The problem appears to be in the inversion of the matrix Ω � S(p; θ): after a small

number of iterations this matrix becomes close to singular. To deal with this issue, we took an

alternative route that eliminated the need for inverting this matrix.21 We begin by rearranging

equation (B.1).

21See also Conlon and Gortmaker (2020).
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(
Ω� S(p; θ)

)
(p−mc) = s(p) (B.3)

Note that both sides of (B.3) depend on the price vector p, and the right-hand side depends

only on consumer demand. We apply the following iteration method:

1. Begin with an initial guess for prices

2. Calculate the left hand side of (B.3) using these prices

3. Find a new price vector, which equates the market shares s(p) to the left hand side calculated

in step 2

4. Iterate until convergence of both prices and market shares, that is, the right and left hand

sides of (B.3) should equalize.

Approximating Profit Functions. To calculate κm,f (δ), as well as the frontier Ff , we

must know the equilibrium and deviation flow payoffs π(κ) and π̂(κ) for each κ ∈ [0, 1]. Since

the method presented above produces those payoffs for a specific value of κ, we use a poly-

nomial approximation of the payoff functions. In particular, we calculate these functions for

κ ∈ 0.1, 0.2, ...1, and use the single 9th degree polynomial approximation for these values for the

rest of our analysis. For each of these approximations we conduct the following tests to check

for their validity:

1. We look at the two differences π(0) − π̂(0) and π′(0) − π̂′(0). The results in section 2.2

imply these differences should equal zero. Since the point κ = 0 is not included in the set

of points that we use for approximating the functions, this is a valid test.

2. We look at a set of 10 random values of κ ranging from 0 to 1, and calculate the difference

between the profits as calculated directly using the iteration method above to the profits

implied by the polynomial approximation.

Using these tests, we found that the approximations perform well.

C Simulations: a detailed description

This appendix section provides details on the simulations described in section 2.3. We set the

stage by presenting one “baseline” simulation in detail. We then generate additional simulations

by altering the parameters of this baseline simulation.

A baseline simulation. We begin by setting the market fundamentals and the demand

parameters θ = (α, β, σ) for each market, presented in Tables C1 and C2.
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Product Firm a Firm b Char1 Char2 Char3 Char4 Char5 Char 6 MC

1 1 0 1 0 0 0 0 1 79.71
2 1 0 0 1 0 0 0 1 45.93
3 0 1 1 0 0 0 1 0 73.51
4 0 1 1 0 0 1 0 1 78.70
5 0 1 1 1 0 0 1 0 67.43
6 0 0 0 1 0 0 0 0 55.12
7 0 0 1 0 0 0 0 0 53.91
8 0 0 1 0 1 1 0 1 79.22
9 0 0 1 0 1 0 0 0 52.61
10 0 0 0 0 0 0 1 0 48.98
11 0 0 1 1 1 0 0 1 75.84
β 5 4 4 3 1 2 1 2 -
σ 1 2 0 0 2 2 0 0 -

α = −3 - - - - - - - - -
σp = 0.6 - - - - - - - - -
β0 = −4 - - - - - - - - -

Table C1: Market 1 Fundamentals, baseline simulation

Product Firm a Firm b Char1 Char2 MC

1 1 0 1 0 27.71
2 1 0 0 1 20.21
3 0 1 1 1 26.33
4 0 1 1 0 27.48
5 0 0 0 1 24.98
6 0 0 1 1 22.25
7 0 0 1 0 21.99
β 2 3 1 1 -
σ 1.5 2 0 0 -

α = −1.5 - - - - -
σp = 0.5 - - - - -
β0 = −2 - - - - -

Table C2: Market 2 Fundamentals, baseline simulation

As seen in the tables, this simulation features eleven products in market 1, and seven products

in market 2. The columns “Firm a” and “Firm b” present the value of these firms’ brand

dummies: i.e., they tell us which products were produced by firms a and b, respectively. In

market 2, for example, each of these firms offers two products. The columns Char1-Char-6

represent six additional product characteristics, all of which are captured by dummy variables.

Including the firm a and firm b dummies, we therefore have a total of eight product characteristics

in market 1, and four product characteristics in market 2. The MC column provides the marginal

cost associated with each product. The marginal costs for markets 1 and 2 were generated from

a uniform distribution in [45,90] and [20,30], respectively. Total market size (i.e. number of

consumers) is set to 10,000,000 in each of the two markets.

Recall that βk constitutes the mean utility value of product characteristic k, whereas σk is
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the standard deviation of consumers’ normally-distributed tastes about that mean (i.e., the

“random coefficient”). Similarly, α and σp are the mean and standard deviation of consumers’

price sensitivity. The tables indicate that we allow random coefficients on the two brand dummies

and on price in both markets, and in market 1, allow them additionally on the Char3 and Char4

characteristics. The parameter β0 captures the mean utility from the outside option.

We follow the method outlined in Appendix B above to compute two sets of equilibrium prices

in each market, one with κ = 0, and one with κ = 1 (i.e., corresponding to the most-competitive,

and to the least-competitive static equilibria, respectively). Those prices are shown in Table C3.

Product Market 1 (κ = 0) Market 1 (κ = 1) Market 2 (κ = 0) Market 2 (κ = 1)

1 94.01 98.17 44.42 48.04
2 57.21 59.82 34.78 37.64
3 89.25 93.02 42.29 47.07
4 95.99 99.14 43.75 48.71
5 82.65 86.13 34.38 34.48
6 63.14 63.24 31.22 31.33
7 61.90 61.99 30.91 31.02
8 89.58 89.85 - -
9 60.40 60.46 - -
10 56.79 56.89 - -
11 87.25 87.48 - -

Table C3: Prices, baseline simulation

Following the description in Appendix B, we next approximate the profits on the equilibrium

path, as well as the deviation profits, for each firm f ∈ {a, b} in each of the two markets, for all

κ ∈ [0, 1]. Figure C1 plots the equilibrium path profits, and the deviation profits in market 2

for firms a and b. It is easy to see that π is concave while π̂ is convex. As discussed in section

2, these are even stronger conditions than those required by Assumption 1. It follows that our

analytical results hold at the parameters of the baseline simulation.

Setting both firms’ discount factor to δ = 0.1, we use these approximations to calculate κ(δ),

the largest conduct vector that is supportable absent multimarket contact, and κ̂(δ), the point on

the F (δ) frontier that maximizes the sum of profits for firms a and b with multimarket contact.

Our next step, and the main objective of the simulation exercise, is to trace the impact of

changes to the baseline parameter values on the levels of κ that can be supported, with and

without multimarket contact. We begin, in market 1, by increasing the value of the dispersion

of price sensitivity σp from its baseline value of 0.6 to 1.1, using 0.1 increments. The left-hand

side of Figure C2 shows the impact of this increase on κa,1(δ) and κb,1(δ): the largest values of

κ that satisfy firms a and b’s ICC in market 1, absent multimarket contact.

The figure shows that increasing σp, holding all other parameters fixed, affects firms’ ICCs in

opposite directions: it causes firm a’s ICC to hold at increasing values of κ, while firm b’s ICC
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Figure C1: Equilibrium-path profits and deviation profits, market 1

is satisfied at decreasing values of κ. As discussed in section 2.3, this appears to be a rather

general pattern in the simulations we have experimented with.

The right-hand side of Figure C2 performs a similar exercise in market 2, where again we start

with the baseline parameter values, but this time increasing the value of βb, the mean utility

associated with firm b’s brand, from 3 to 4 at increments of 0.2. Similarly as before, this affects

the supportable κ values of the two firms in opposite directions. Specifically, firm b’s ICC is

relaxed (i.e., it can hold at higher values of κ), while firm a’s ICC become more stringent. Again

referring to the discussion in section 2.3, this appears to be a rather general pattern: increasing

either the mean utility, or the random coefficient associated with a firm’s brand dummy relaxes

the ICC for this firm, while tightening the ICC for its rival.

Another insight from figure C2 is that markets can satisfy either the symmetric or the asymmet-

ric positioning properties depending on parameter values. Specifically, when βb ∈ {3, 3.2, 3.4},
symmetric positioning is displayed, but a switch to asymmetric positioning obtains for βb ∈
{3.6, 3.8, 4}. Whether symmetric or asymmetric positioning holds is therefore driven by es-

timable demand parameters. This is a concrete sense in which demand estimates inform the

34



Figure C2: Left: κa,1(δ), κb,1(δ) at different values of σp. Right: κa,2(δ), κb,2(δ) at different values of βb.

analysis of multimarket contact.

The consequences of symmetric vs. asymmetric positioning are shown next. Figure C3 plots

the κ frontiers Fa(δ) (green) and Fb(δ) (yellow) when σp = 0.6 and βb = 3. The combined frontier

F (δ) is thus the boundary of S(δ), i.e. the boundary of the intersection between Sa(δ) and Sb(δ).

On this F (δ) frontier we find the red dot, indicating the conduct vector that maximizes the

combined profits of firms a and b with multimarket contact. The blue dot maximizes these

profits absent multimarket contact.

Since we are in a symmetric positioning case, Corollary 1 tells us that, given the high-level

conditions of Assumption 1 (which we have verified to hold in the simulation), we should expect

the blue dot to lie inside the frontier. Indeed, the figure shows us that this is the case. In contrast,

Figure C4 plots the same information for a parameter combination that satisfies asymmetric

positioning where σp = 1.1 and βb = 4. Now the blue dot does lie on the F (δ) frontier, again

consistent with Corollary 1, and in fact almost coincides with the red dot, leaving a very minor

scope for an impact of multimarket contact on the competitive regimes that can be supported

in equilibrium.
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Figure C3: κ Frontier, Market 1: σp = 0.6, Market 2: βb = 3
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Figure C4: κ Frontier, Market 1: σp = 1.1, Market 2: βb = 4
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Takeaways. In section 2.2 we presented analytical results, focusing on the role played by the

symmetric positioning property on the potential gains from multimarket contact. These results

were obtained under shape restrictions on firms’ profit functions.

The simulation exercise above demonstrated, first, that these restrictions are satisfied by the

Random Coefficient model, at the parameter values of the baseline simulation. It then showed

that whether symmetric or asymmetric positioning prevails is determined by the demand pa-

rameters, and that these properties, in turn, determine the scope of the potential impact from

multimarket contact. This exercise sheds light on the relationship between the underlying de-

mand structure and the analysis of multimarket contact.

Additional Simulations. To further validate these results, we perform a variety of different

simulations by changing the market fundamentals described above. In particular, we change the

number of products in each market, the number of fringe competitors, marginal costs and the

parameter values. So far, this ongoing work suggests that the patterns demonstrated above are

generally present in these additional simulations as well.

Importantly, we have found that the restrictions of Assumption 1 can be violated at some

demand parameters. This suggests that one cannot simply assume that these restrictions hold,

and instead these conditions should be verified, much in the spirit of what was shown in the

baseline simulation above.

The empirical method of estimating the potential impact of multimarket contact, presented

in section 2.3 can be applied even if these restrictions do not hold. What is lost, however, is the

ability to draw on our analytical results, primarily, Corollary 1, in interpreting the relationship

between the estimated parameters and the estimated potential impact of multimarket contact.
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D Tables and Figures

Table 1: Demand estimates: Packaged Hummus Salad

Characteristics w/o random coefficients Characteristics with random coefficients

β SE β SE σ SE

Constant -2.626 1.157 a 6.002 0.894 0.024 11.998
spicy -1.201 0.179 b 5.769 0.595 0.109 7.512
cress -1.018 0.156
pine nut -0.288 0.232 Price sensitivity
tahini -0.974 0.139
masabacha -0.286 0.195 α SE σp SE
other condiments -1.241 0.151
spicy trend 0.943 0.470 -3.082 0.836 0.926 0.379
Tahini trend 1.597 0.421

c 2.728 0.139
d 1.722 0.159
e 2.806 0.142
f 0.617 0.114
h 6.434 1.375
i 1.754 0.303
a spicy 0.875 0.157
b spicy 0.747 0.187
c spicy 1.203 0.183

Observations 2,031

Notes: Utility parameter estimates. See text for description of product characteristics. The letters a-i represent a selected set of
brand dummy variables, where the a and b brands also have estimated random coefficients. The a, b and c brands were interacted
with the “spicy” dummy variable. The spicy and Tahini characteristics were interacted with the time trend. Dummy variables
for 42 months were included but not reported. Source: authors’ estimates implied by the data and model assumptions.
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Table 2: Demand estimates, Instant Coffee

Characteristics w/o random coefficients Characteristics with random coefficients

β SE β SE σ SE

Constant -0.948 1.891 a 6.400 0.782 0.693 8.451
decaff 2.118 0.830 b 2.303 2.095 4.152 2.427
delicate -0.180 0.128
dry 1.443 0.632 Price sensitivity
grained -0.979 0.129
golden 0.797 0.574 α SE σp SE

c 6.141 0.701 -4.849 1.933 1.356 0.877
d -0.671 0.429
e 6.742 0.796

Observations 1,515

Notes: Utility parameter estimates. See text for description of product characteristics. The letters a-e represent brand dummy
variables, where a and b are the two leading manufacturers. A selected set of additional brand dummies denoted c, d, e are
included (see text). Dummy variables for 42 months were included but not reported. Source: authors’ estimates implied by the
data and model assumptions.
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Table 3: The potential impact of multimarket contact on profits (%)

Sample month Firm a Firm b Combined profits, firms a and b

1 0.44 0.36 0.39
2 0.53 0.41 0.46
3 0.52 0.38 0.44
4 0.46 0.41 0.43
5 0.34 0.37 0.35
6 0.43 0.41 0.42
7 0.41 0.37 0.38
8 0.42 0.38 0.40
9 0.13 0.12 0.12
10 0.16 0.15 0.16
11 0.37 0.32 0.34
12 0.45 0.36 0.40
13 0.41 0.36 0.38
14 0.39 0.33 0.36
15 0.53 0.35 0.42
16 0.23 0.21 0.22
17 0.33 0.26 0.29
18 0.31 0.27 0.29
19 0.22 0.18 0.20
20 0.20 0.16 0.18
21 0.38 0.31 0.34
22 0.31 0.22 0.25
23 0.25 0.20 0.22
24 0.19 0.15 0.17
25 0.17 0.14 0.15
26 0.36 0.30 0.32
27 0.32 0.26 0.29
28 0.33 0.25 0.28
29 0.19 0.18 0.18
30 0.01 0.03 0.02
31 0.14 0.12 0.13
32 0.25 0.19 0.22
33 0.33 0.30 0.32
34 0.24 0.23 0.23
35 0.21 0.23 0.22
36 0.40 0.29 0.34
37 0.00 0.00 0.00
38 0.26 0.25 0.26
39 0.19 0.15 0.16
40 0.07 0.06 0.06
41 0.14 0.12 0.13
42 0.08 0.07 0.08
43 0.14 0.15 0.14

Maximum impact 0.53 0.41 0.46

Notes: The percentage difference in profits between the κ(δ) and the κ̂(δ) vector, cap-
turing the potential impact of multimarket contact, is presented. The analysis was per-
formed separately in each sample month. The bottom row shows the maximum impact
over the 43 month-specific analyses. Source: authors’ estimates implied by the data and
model assumptions.
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Table 4: The potential impact of multimarket contact on prices (%)

Sample month Packaged Hummus Salad Instant Coffee

1 0.50 0.53
2 0.55 0.51
3 0.51 0.57
4 0.33 0.68
5 0.21 0.77
6 0.32 0.67
7 0.35 0.54
8 0.35 0.62
9 0.10 0.23
10 0.11 0.31
11 0.36 0.51
12 0.41 0.47
13 0.36 0.55
14 0.36 0.43
15 0.60 0.31
16 0.18 0.25
17 0.35 0.20
18 0.27 0.33
19 0.26 0.14
20 0.27 0.11
21 0.43 0.30
22 0.37 0.16
23 0.32 0.17
24 0.23 0.13
25 0.23 0.09
26 0.43 0.31
27 0.41 0.34
28 0.46 0.23
29 0.21 0.29
30 -0.03 0.10
31 0.22 0.09
32 0.37 0.15
33 0.34 0.31
34 0.28 0.31
35 0.13 0.47
36 0.48 0.25
37 0.01 -0.01
38 0.25 0.43
39 0.30 0.13
40 0.07 0.08
41 0.16 0.12
42 0.05 0.16
43 0.07 0.35

Maximum impact 0.60 0.77

Notes: The percentage difference in the sales-weighted average price between
the κ(δ) and the κ̂(δ) vector, capturing the potential impact of multimarket
contact, is presented for each of the two categories. The analysis was per-
formed separately in each sample month. The bottom row shows the maxi-
mum impact over the 43 month-specific analyses. Source: authors’ estimates
implied by the data and model assumptions.42
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Figure 1: Firms’ presence within and across markets

Figure 2: Largest supportable κ vectors absent multimarket contact
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Figure 3: Supportable κ vectors with multimarket contact

Figure 4: Firms’ individual ICCs, with and without multimarket contact
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Figure 5: Intersecting both firms’ ICCs, with and without multimarket contact

Figure 6: The magnitude of the symmetry / asymmetry property and its relationship to the potential gains from
multimarket contact over the 43 month-specific analyses
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Figure 7: A hypothetical merger generating multimarket contact

46


	Estimating the Potential Effect of Multi-Market Contact.pdf
	Introduction
	Model
	The Supergame framework
	Additional structure and analytical results
	Demand

	Empirical application: the food sector
	Concluding remarks and additional applications
	Bibliography
	Proof of Lemma 4
	Computational details
	Simulations: a detailed description
	Tables and Figures




