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Abstract

We derive the revenue maximizing allocation of m units among n symmetric agents

who have unit demand, and who take costly actions that influence their values before

participating in the mechanism. The allocation problem with costly actions can be

represented by a reduced form model where agents have convex, non-expected utility

preferences over the interim probability of receiving an object. Both the uniform m+1

price auction and the discriminatory pay-your-bid auction with reserve price constitute

symmetric revenue maximizing mechanisms. Contrasting the case with exogenous val-

uations, the optimal reserve price reacts to both demand and supply. We also identify

a condition under which the optimal mechanism is indeed symmetric, and illustrate the

structure of the optimal asymmetric mechanism when the condition fails. The main

tool in our analysis is an integral inequality, due to Fan and Lorentz (1954), involving

majorization, super-modularity and convexity.
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1 Introduction

We derive the revenue maximizing mechanism in a multi-unit allocation problem where

agents, prior to interacting with the mechanism, undertake costly actions that are unob-

servable to the designer, and that influence their valuations.1 All other model’s features are

standard, and correspond to the symmetric, private independent values model with quasi-

linear utility. The results immediately translate to procurement setting where the designer

acts as the buyer.2

Because of the ex-ante investments, the agents’ valuations become endogenous to the

mechanism. For example, if the action is a costly investment that increases an agent’s value

for the good, this agent will only undertake the investment if she believes that her probability

of receiving an object in the mechanism is sufficiently high. Hence, in contrast to the

standard environment where values are exogenous, a mechanism also needs to provide here

the right incentives for individual investments, as it indirectly affects revenue by changing

the distribution of valuations.

A revenue-maximizing seller can provide stronger ex-ante investment incentives by in-

creasing the probability of allocating units, but is constrained by the limited supply and

by the usual monopolistic supply reduction incentives. The revenue maximizing mechanism

must finely balance these conflicting forces. The revenue-maximizing mechanism for any

fixed profile of investment strategies can be found by standard methods following Myer-

son’s (1981) celebrated analysis. But, such a mechanism will not be optimal because its

derivation ignores the indirect effect of the mechanism on the distribution of values. To

directly solve for the optimal mechanism that is selected before agents invest, one would

need to:

1. Characterize the endogenous distribution of valuations generated by the investments

induced by each feasible mechanism.

2. Derive the expected revenue for each feasible mechanism (taking into account the

endogenous distribution of values it generates) and maximize over feasible mechanisms.

Both steps pose major challenges that have hindered a solution so far: an agent’s in-

vestment in a given mechanism depends on the anticipated bids and thus the distribution of

1Tan (1992) documents an example where two groups of military contractors spent over $600 million
each, prior to competitive bidding.

2A variety of settings form special cases of our maximization framework and we offer illustrations to
auctions where the endogenous values are influenced either additively or multiplicatively by costly actions,
and to auctions with entry costs.
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other agents’ investments - the overall distribution of investments must solve a fixed point

problem. Moreover, the distribution of values and hence of virtual values is also endogenously

determined by the mechanism.

The principal innovation of the paper is a solution via an approach that avoids the above

complex steps by combining: 1) a reduced-form modeling where agents have non-expected

utility preferences that are convex in the interim probability of obtaining a unit, and 2)

optimization based on the Fan-Lorentz (1954) integral inequality.

It is well known from the decision-theoretic literature (see, for example, Kreps and Porteus

1979 and Machina (1984)) that preferences induced by actions that are taken prior to the

resolution of uncertainty become non-linear and convex in probabilities - this is, precisely, the

insight we exploit here by solving, instead of the original auction problem with investments,

a reduced-form auction problem without investments, but with convex non-expected utility

preferences.3

The reduced form model presents its own challenges: the main technical difficulty is

the non-linearity of ex-ante valuations in the allocation probability, which implies that the

revenue maximization exercise cannot be performed “realization by realization”. The direct

subject of maximization becomes the interim probability of obtaining an unit - the “reduced

form auction” in the language of Maskin and Riley (1984), Matthews (1984) and Border

(1991). Therefore, besides the standard monotonicity requirement stemming from incentive

compatibility, the most complex constraint is the feasibility constraint, derived for multi-

unit auctions by Che, Kim and Mierendorff (2013). To solve the optimization problem we

combine insights gained from majorization theory (see Hardy, Littlewood and Polya 1929)

with the elegant Fan and Lorentz (1954) integral inequality that determines the maximizer

of a convex and super-modular objective subject to a majorization constraint.

We first focus on symmetric mechanisms: under a super-modularity and convexity con-

dition on the preferences, the optimization exercise over direct mechanisms yields an interim

probability assignment such that units are allocated to the agents with the highest types,

conditional on these exceeding a critical cutoff.4 We also derive the bidding equilibria of

the uniform (m + 1)− price auction and of the discriminatory pay-your-bid auction with a

reserve price (where m is the number of supplied units), and show that these auctions, aug-

3Non-linear preferences in probabilities have also appear in Kahneman and Tversky’s (1979) Prospect
Theory and Quiggin (1982). Consequences of multi-agent equilibrium behavior were first analyzed by Craw-
ford (1990).

4The present optimization approach throws a new light also on the classical results obtained in the
linear case, masterfully analyzed by Myerson (1981) and by Riley and Samuelson (1981) - their setting with
exogenous valuations is a special case of our present framework.
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mented by a reserve price, implement the revenue maximizing allocation among symmetric

mechanisms.

While in the setting with exogenous valuations the optimal reserve price coincides with

the optimal cutoff, and neither is responsive to changes in demand nor supply, here we find

that reserve price and cut-off type are distinct objects, and often display comparative statics

in opposite directions: Under the same general conditions used for the maximization exercise,

the optimal cutoff increases in the number of agents, and decreases in the number of objects,

and under some additional sufficient conditions, the optimal reserve price decreases in the

number of agents and increases in the number of objects.

For the one-object and two-bidder case, we also provide a sufficient (and almost neces-

sary) condition under which the optimal mechanism is indeed symmetric. As is well known

from Myerson’s analysis, in symmetric frameworks a discriminatory treatment decreases the

payment that can be extracted from agents with an exogenously given distribution of values.

On the other hand, by giving a bidder an “unfair” advantage over competitors, the seller

can increase this particular bidder’s investment incentives. Roughly speaking, our condition

ensures that the first effect dominates. The technical argument involves a combination of

the Fan-Lorentz insight, Young’s inequality, and a variational principle.

In addition, we provide an illustrative example where we uncover the structure of the

optimal asymmetric mechanism when the above condition fails: this mechanism combines,

or, in the extreme cases replaces, the auction by a series of posted-price offers with favoritism.

Finally, we also note that, if the optimal mechanism is asymmetric, the seller can increase

revenue in a standard, symmetric auction by restricting the entry of bidders5. This ensures

that each bidder has a reasonably high chance of winning, and hence a high enough incentive

to invest. In particular, the classic result of Bulow and Klemperer (1996) need not to hold

in our environment.

The paper is organized as follows: At the end of the present section we briefly survey the

relevant literature. In Section 2 we describe the auction model. In Section 3 we formulate

the revenue maximization problem and the main tools towards its solution. In Section 4

we derive the symmetric revenue maximizing allocation in the “regular” case, we offer a

condition when this is the overall optimal mechanism, and discuss the optimal asymmetric

mechanism when this condition fails. We also illustrate how ex-ante restricting entry can

be beneficial. The focus of Section 5 is on standard auction formats that implement the

5In projects where investments are massive, only two bidders are allowed. See Fullerton and McAfee (2009)
and Che and Gale (2003) for examples in procurement.
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optimal allocation, and we explain how the optimal reserve price is affected by demand

and supply. This section concludes by showing how the uniform price auction can be also

used to implement the welfare maximizing allocation. In Section 6 we briefly investigate the

welfare maximizing mechanism and compare it with the revenue maximizing one. Section 7

concludes. All proofs and some additional derivations are contained in two Appendices.

1.1 Literature Review

Single-object, standard auctions with non-expected utility preferences were analyzed by,

among others, Karni and Safra (1989) and by Neilson (1984).

There is a substantial literature on auctions with investments, often formulated in the

dual procurement setting where the designer acts as a buyer. In that literature, the mech-

anism is taken there as given - often a first- or second-price auction – and an optimal

mechanism-design analysis is not performed. King et al. (1992) consider completely in-

formed bidders whose types depend on investments made prior to the auction, and show

that the second-price auction leads to efficient investments (only one buyer invests), while

the first-price auction (i.e, its mixed-strategy symmetric equilibrium) yields a higher rev-

enue. Rogerson (1992) and Hatfield et al. (2018) relate the ex-post efficient allocation to

strategy-proofness and ex-ante incentives to invest.

Piccione and Tan (1996), Tan (1992), and Jeitschko and Wolfstetter (2000) analyze mod-

els where the effect of investments is stochastic. The incentives of the designer to create

asymmetries among otherwise ex-ante identical bidders in procurement with observable in-

vestments are discussed by Bag (1997) and by Arozamena and Cantillon (2004).

Another related literature stream studies auctions with entry cost: entry can be seen as a

binary investment decision with a fixed cost, and the optimal auction derivation is then more

amenable to standard analysis. The settings of Celik and Yilankaya (2009) and Menezes and

Monteiro (2000), for example, are special cases of our model because the entry decision is

made by privately informed agents.

2 Auctions with Ex-Ante Investments

There are m ≥ 1 identical and indivisible objects, and n ≥ m ex-ante symmetric agents.

Each agent i ∈ {1, . . . , n} = N has a type θi ∈ Θ = [θ, θ] ⊆ R+ that is her private

information, and demands at most one object. Types are distributed I.I.D. according to a

distribution F : Θ→ [0, 1], with positive density f > 0.
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2.1 Actions and Preferences

Before participating in the mechanism, each agent i takes an action ai from a compact set

A ⊂ R. This action is private information to the agent (and therefore unobservable to the

designer). Depending on her type θi, agent i has preferences over her own action ai ∈ A,

her own allocation xi ∈ [0, 1] and her own monetary transfer yi. We assume that these are

standard expected utility preferences, quasi-linear in the monetary transfer and separable in

the cost of an action c(ai) ≥ 0. The preference can be thus represented by a utility function

of the form:

xi v(ai, θi)− yi − c(ai),

where the value for a unit of the good, v(ai, θi) ∈ R+, is assumed to be increasing in her

type θi and in her action ai, super-modular and non-negative.6 In addition, we assume that

v is differentiable and that its partial derivative with respect to θ is bounded. Furthermore,

we assume that there exists a costless action 0 ∈ A such that c(0) = 0.7

Remark. The agent’s action may also have an effect outside the mechanism, e.g., an invest-

ment in a cost reducing technology produces additional benefits in other areas of operation.

We can include this in our analysis by having v(ai, θi) measure the effect of the costly action

on the valuation inside the mechanism, and by having c(ai) measure the cost, net of the

benefits, outside the mechanism.

2.2 The Dual Procurement Model

The auction model is equivalent to a model of procurement where the designer is a buyer

and where seller i incurs a cost of ṽ(ai, θi) if she produces an unit. Higher investment levels,

or higher types lead to lower cost, and the cost ṽ is sub-modular: higher types reduce their

cost more by investing.

Without loss of generality, assume that the buyer pays every winning seller the cost

incurred by the highest cost seller type under no investment, ṽ(0, θ), and asks the seller to

pay back an amount ti. Seller i’s utility is thus given by

−xiṽ(ai, θi) + xiṽ(0, θ)− ti − c(ai) = xiv(ai, θi)− ti − c(ai)
6The assumption that the value is non-negative corresponds to free disposal.
7This is a normalization: we can always subtract mina∈A c(a) from the agent’s utility without changing

her preferences over actions, allocations, or transfers.
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where we define v(ai, θi) = ṽ(0, θ)− ṽ(ai, θi). Then, the value function v satisfies all assump-

tions made above, and therefore the optimal mechanism for procurement can be determined

from the optimal mechanism in the auction problem, and vice-versa.

2.3 Timing and Discussion

The timing is as follows (c.f. Figure 1):

1. Each agent privately observes her type;

2. The designer (i.e., seller in the auction interpretation) commits to a mechanism;

3. Each agent decides whether to participate in the mechanism, and privately chooses an

action; the taken action is not observable by other agents nor by the designer.

4. Each agent sends a message to the mechanism;

5. Depending on the sent messages, an allocation and transfers are realized.

1

types are obser
ved

2

mech
anism

is chosen

3

actio
ns are chosen

4

mess
ages sen

t

5

allocation rea
lize

s

Figure 1: Timing of the game.

This is the standard timing in the literature on procurement auctions with costly invest-

ments to reduce cost8. In particular, it restricts attention to commonly used mechanisms

where messages are exchanged between the agents and the seller only after actions are cho-

sen. Since the seller indirectly cares about efficiency (because it increases the pie from which

revenue can be extracted) and since it is inefficient to have more than m agents pay the

investment cost, the seller would like to coordinate investments, e.g., by adding a round of

communication prior to investment. Alternatively, the seller could run the auction before

8Building a prototype for a battleship or a jet fighter, say, requires an adjustment of existing technologies,
and may lead to a future cost reduction, which is equivalent to an investment in the object’s value in the
standard auction setup.
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investments are made, and then allow winners to make investments before ultimately de-

livering the objects and collecting payments. While theoretically beneficial, such a delay is

often not practical when the involved periods of time are substantial (see the discussion of

ex-ante investments in the context of the recent FCC incentive auction in Milgrom (2017)).9

For example, the government could hold an auction in 2020 for the right to start using new

spectrum in, say, 2030. But then firms need to make large monetary commitments without

knowing which technology will emerge from their investments, and the winners need not be

those with the best future technology. Second, due to liquidity constraints, it may not be

feasible to collect the full payment today, leading to possible renegotiation in the future.10

2.4 Mechanisms

A mechanism specifies a set of reports Ri for each agent i, and a mapping from reports to

an allocation and transfers:

x :
∏
i∈N

Ri → X = [0, 1]n

y :
∏
i∈N

Ri → Rn .

Given a mechanism (x, y) each agent i picks an optimal report ri and takes an optimal

action. As agent i can condition her action on the report she plans to send, her reporting

problem is equivalent to

max
ri∈Ri

({
max
ai∈A

Er−i
[xi(r)] v(ai, θi)− c(ai)

}
− Er−i

[yi(r)]

)
. (1)

2.5 Reduction to Convex Preferences

We now show that an agent who takes an endogenous action obtains the same interim

expected utility and sends the same report as an agent who takes no action, but has a

9For example, incumbent potential winners at the 2019 5G spectrum auction in Germany were required
to operate at least 1000 5G basis stations each until 2022, and to offer speeds of at least 100Mbit/second on
all major rail-and highways until 2024. Newcomers must cover 25% of the population until 2023 and 50%
until 2025.

10Stochastic investments and moral hazard - are not yet part of our current mode. But, it is of importance
to understand the properties of mechanisms actually used in practic. A future, more complex, model may
explicitly incorporate an optimization over the time structure.
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non-expected utility preference. Define

pi(ri) := Er−i
[xi(r)] (2)

to be the interim probability with which agent i receives an object in a given mechanism.

Let h : [0, 1]×Θ→ R be the utility agent i gets when she receives an unit with probability

pi and takes the optimal action11

h(pi, θi) := max
ai∈A

pi v(ai, θi)− c(ai) . (3)

Then, the reporting problem of agent i given in (1) is equivalent to the reduced form problem

where agent i has non-linear preferences over her allocation probability pi

max
ri∈Ri

h(pi(ri), θi)− Er−i
[yi(r)] .

Lemma 1. h(pi, θi) is convex in pi, increasing in θi and pi, super-modular in (pi, θi) and

satisfies h(0, θi) = 0 for all θi ∈ Θ.

The agent’s incremental benefit from receiving the object with higher probability is non-

negative, and higher types derive higher utility from the object. Since h is defined inde-

pendently of the agent’s action, the mechanism design problem where the agent chooses an

action before participating in the mechanism is equivalent to the mechanism design problem

where each agent has a convex valuation given by h(pi, θi), but chooses no costly action.

3 The Revenue Maximization Problem

We first restrict attention to symmetric mechanisms that are invariant to permutations of

the agents’ names, and where every agent uses the same reporting and investment strategies.

Consider a symmetric, direct mechanisms where each agent reports his type θi, and

where the mechanism specifies allocations and monetary transfers to all agents, depending

on the reported types. As h(pi, θi) is super-modular, it is well-known that the incentive

compatibility of a (symmetric) direct mechanism is equivalent to the standard monotonicity

11We assume that an optimal action always exists, which is satisfied for example if ∂2v
∂a2 ≤ 0 for all θi and

∂2c
∂a2 > 0.
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of the equilibrium expected allocation12

p(θi) := Eθ−i
[xi(θ1, ..., θn)]

together with an envelope condition determining the expected interim transfer (see for exam-

ple Guesnerie and Laffont (1984), Corollary 2.1). The envelope condition yields the following

standard revenue formula13:

Proposition 1 (Revenue Equivalence). The expected revenue in any symmetric, incentive

compatible mechanism where the participation constraint is binding for the lowest type (i.e.

the lowest type obtains zero utility) is given by

n

∫
Θ

H(p(θ), θ) f(θ) dθ , (4)

where the “virtual utility” H : [0, 1]× [θ, θ]→ R is defined by

H(p, θ) := h(p, θ)− ∂h(p, θ)

∂θ
× 1− F (θ)

f(θ)
. (5)

It is convenient to reformulate the problem in terms of the quantile t = F (θ) associated

with a type θ.14 For quantile t we define the probability q(t) = p(F−1(t)) and the associated

virtual utility

G(q, t) := H(q, F−1(t)) . (6)

As dθ
dt

= 1
f◦F−1(t)

, integration by substitution of (4) yields the following equivalent character-

ization of expected revenue.

Expressed in terms of quantiles, the above revenue equivalence result yields:

Corollary 1. The expected revenue in any symmetric, incentive compatible mechanism where

the participation constraint is binding for the lowest type is given by

n

∫ 1

0

G(q(t), t) dt . (7)

12As the mechanism is symmetric, the definition of p is independent of the agent’s identity i.
13The result below also holds witout any symmetry assumptions.
14Since F has a strictly positive density, F−1 is well defined.
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3.1 The Resource Constraint

The non-linearity of the expected revenue G in the allocation probability q precludes a

standard point-by-point maximization approach: since the revenue formula is not additively

separable across realizations of types, changing the ex-post allocation at one type profile

affects revenue from other type profiles. The crucial constraint becomes the feasibility (or

resource) constraint: what expected interim allocations functions can be obtained from feasi-

ble, symmetric mechanisms? This question has been initially addressed (in the framework of

a single object auction) by Matthews (1984), Maskin and Riley (1984), and Border (1991).15

The following, more recent result characterizes the set of feasible interim allocation rules for

multi-unit auctions with one-dimensional types:

Proposition 2 (Che, Kim & Mierendorff (2013), Corollary 4). Consider an auction with

n bidders where m units are available. A symmetric, monotone interim allocation rule q :

[0, 1]→ [0, 1] is a reduced form of a feasible allocation rule where no agent obtains more than

k objects if and only if, for each t ∈ [0, 1] it holds that

n

∫ 1

t

q(s)ds ≤
n∑
i=0

min{i · k,m}
(
n

i

)
(1− t)i tn−i . (8)

We use a novel Lemma that connects the Che, Kim & Mierendorff characterization to

the concept of (weak) majorization:16

Lemma 2. It holds that

n∑
i=0

min{i,m}
(
n

i

)
tn−i(1− t)i = n

∫ 1

t

φm,n(z)dz

where φm,n(t) is the probability that at most m − 1 out of n − 1 agents have a type larger

than the type associated with the quantile t :

φm,n(t) :=
m−1∑
i=0

(
n− 1

i

)
tn−1−i(1− t)i . (9)

The function φm,n is increasing in t and m, and decreasing in n. Furthermore,
∫ 1

0
φm,n(t)dt =

15These papers were written without connections to the earlier mathematical literature on the existence
of measures with given marginals, e.g. Strassen (1965).

16For a characterization of a single-object reduced form auction in terms of second-order stochastic domi-
nance see Hart and Reny (2015).
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m
n
.

Combining Proposition 2, Lemma 2 and Corollary 1, our revenue maximization problem

is equivalent to the following problem:

Proposition 3 (Characterization of Revenue Maximizing Mechanisms). A symmetric mech-

anism is revenue maximizing if and only if the induced interim probability of receiving an

object q : [0, 1]→ [0, 1] solves

max
q

n

∫ 1

0

G(q(t), t) dt (10)

subject to:

q non-decreasing (11)∫ 1

t

q(z) dz ≤
∫ 1

t

φm,n(z) dz for all t ∈ [0, 1] , (12)

where t = F−1(θ), G is defined in (6) and where φm,n is defined in (9).

3.2 Majorization and the Fan-Lorentz Inequality

In order to deal with the resource constraint (12), we first recall several concepts and results

from the theory of majorization. For non-decreasing q, q̄ ∈ L1(0, 1) we say that q̄ majorizes

q, denoted by q ≺ q̄ if the following two conditions hold:17

∫ 1

t

q(v)dv ≤
∫ 1

t

q̄(v)dv for all t (13)∫ 1

0

q(t)dt =

∫ 1

0

q̄(t)dt.

We say that q̄ weakly majorizes q, denoted by q ≺w q̄ if the first condition above holds

(but not necessarily the second). If q ≺w q̄ it is easily seen that there exists q′ ≤ q̄ such that

q ≺ q′.

The set

Ω(q̄) := {q : q ≺ q̄}

called the orbit of q̄, is weakly compact and convex. In particular, by Bauer’s Maximum

Principle (1958), a continuous, convex functional on Ω(q̄) attains its maximum on an extreme

17The definition can also be applied to possibly non-monotonic functions q, q̄ ∈ L1(0, 1) if q, q̄ in (13) are
replaced by their non-decreasing re-arrangements.
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point of Ω(q̄). Recall that an extreme point of a convex set A is a point x ∈ A that cannot

be represented as a convex combination of two other points in A18.

Fan and Lorentz (1954) identify a set of convex functionals such that all of them attain

their maximum on Ω(q̄) at q̄.

Proposition 4 (Fan-Lorentz Theorem). Let L : [0, 1] × [0, 1] → R be such that L(q, t)

is convex in q and super-modular in (q, t). Let q, q̄ : [0, 1] → [0, 1] be two non-decreasing

functions such that q ≺ q̄. Then∫ 1

0

L(q(t), t)dt ≤
∫ 1

0

L(q̄(t), t)dt .

We next introduce a regularity assumption ensuring that the Fan-Lorentz conditions are

satisfied by our expected revenue functional.

Definition 1 (Convex-Supermodularity). We say that the environment is “convex super-

modular” (CSM) if the virtual utility H(p, θ) defined in (5) is convex in p and super-modular

in (p, θ).

3.3 Illustrations

Auction without Investments In the standard model without investments we have

h(pi, θi) = piθi and H(p, θ) = p

(
θ − 1− F (θ)

f(θ)

)
.

H is linear and hence (weakly) convex in p. It is super-modular in (p, θ) if and only if

the standard virtual value J(θ) = θ − 1−F (θ)
f(θ)

is non-decreasing. Thus, in this case, our

definition of a CSM environment reduces to the definition of a “regular” environment in

Myerson (1981).

Investments with Additively Separable Values Assume that v(a, θ) = a + θ where

a ∈ A ⊆ R+.
19 Taking an arbitrary optimal selection for the action a∗(p) ∈ arg maxa∈A[p (a+

θ)− c(a)] yields that

h(p, θ) = p θ + p a∗(p)− c(a∗(p)) = p θ + g(p) ,

18Formally x ∈ A is an extreme point of A if x = αy+ (1− α)z, for z, y ∈ A and α ∈ [0, 1] imply together
that y = x or z = x.

19While formally the set of actions is not compact here this is inconsequential: this assumption was only
used to ensure that h is well defined, which we verify here directly.

13



where g(p) := p a∗(p) − c(a∗(p)). As h is convex and increasing in p (see Lemma 1), the

function g is convex. Furthermore, g(0) = 0 due to the existence of the costless action a = 0.

By plugging in (5) we obtain that

H(p, θ) = p J(θ) + g(p)

where J(θ) = θ− 1−F (θ)
f(θ)

is the standard virtual value. As g is convex, it follows immediately

that H is convex in p. Furthermore, if J is non-decreasing then H is super-modular, and

thus the environment is CSM .

Investments with Multiplicative Values. Assume that v(a, θ) = a θ where a ∈ A = R+

and that c(a) = ba
l

l
where l > 1 and b > 0. This yields that

h(p, θ) = max
a∈A

(
p a θ − ba

l

l

)
=
l − 1

l

(
plθl

b

) 1
l−1

.

and, by plugging in (5), that

H(p, θ) = p
l

l−1

(
θ

b

) 1
l−1

K(θ)

where K(θ) := l−1
l
θ − 1−F (θ)

f(θ)
. Assume now that K is increasing (a sufficient condition

is the standard monotone hazard rate condition). Assuming Θ = [0, θ], we obtain that

K(0) = − 1
f(0)

< 0 and that H(p, θ) ≥ 0 implies that K(θ) ≥ 0. Hence, max{H(p, θ), 0} is

convex in p and super-modular in (p, θ). As in the standard case without investments, this

variation from the case where H(p, θ) is itself convex and super-modular is inconsequential20,

and the same methods/result apply.

Fixed Entry Costs This is also a multiplicative case, but there are only two actions:

Enter (a = 1) and Stay Out (a = 0)21. We have v(ai, θi) = aiθi and c (ai) = cai where

20If J (θ) = θ− 1−F (θ)
f(θ) decreases for some types to which J assigns a negative virtual value, then, as those

types are excluded, their virtual value plays no role in determining the optimal allocation.
21In contrast to our general model, the action a is here observable, and the designer could condition the

allocation/the transfers on it. Yet, this instrument is not useful since the allocation and transfers are only
relevant if this bidder chooses action a = 1. Thus, without loss. we can restrict attention to the mechanisms
we already analyzed.
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c > 0.22 We obtain

h(p, θ) = max{pθ − c, 0} and
∂h(p, θ)

∂θ
=

0 if p θ < c

p if p θ > c
.

Thus

H(p, θ) =

0 if p θ < c

p
(
θ − 1−F (θ)

f(θ)

)
− c if p θ > c

.

Assuming an increasing virtual value J(θ) = θ − 1−F (θ)
f(θ)

, note that pJ(θ) − c ≥ 0 implies

pθ ≥ c, and thus that max{0, H(p, θ)} is convex in p and super-modular in (p, θ).

4 Optimal Mechanisms

4.1 The Optimal Symmetric Mechanism

We now derive the optimal mechanism among symmetric ones using the Fan-Lorentz Theo-

rem. To simplify notation, let

ψm,n(θ) := φm,n(F (θ)) (14)

denote the interim probability with which an agent of type θ receives an object when m

objects are allocated efficiently among n agents. We also denote by am,n(θ) the optimal

action for type θ under allocation ψm.n :

am,n(θ) ∈ arg max
a∈A

ψm,n(θ) v(a, θ)− c(a) .

Theorem 1. Suppose the environment is convex super-modular. Then, the revenue maxi-

mizing scheme among all symmetric mechanisms allocates the m objects to the agents with

the highest types, conditional on these exceeding a threshold θ∗m,n ≡ θ∗, where θ∗ is the unique

solution to H(ψm,n(θ∗), θ∗) = 0, whenever such a type exists.23 In the optimal mechanism,

the expected utility of the lowest type, θ is zero.

The intuition for the proof of Theorem 1 (see Appendix) is as follows. First, in a CSM

environment the quantile virtual value G(q, t) is convex and super-modular in (q, t) (Lemma

22Such auction environments are studied by Menezes and Monteiro (2000) and by Celik and Yilankaya
(2009) – the latter authors also study asymmetric mechanisms.

23If H(ψm,n(θ), θ) > 0 for any θ ∈
[
θ, θ̄
]

we set θ∗ = θ, while if H(ψm,n(θ), θ) < 0 for any θ ∈
[
θ, θ̄
]

we set
θ∗ = θ̄.
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4). Thus, the functional q 7→
∫ 1

0
G(q(t), t)dt is convex and it therefore attains a maximum

on an extreme point of the set of monotone functions that satisfy the constraint (12). This

constraint says that q is weakly majorized by the allocation probability φm,n. In turn, this

implies that q is majorized by a function of the form t 7→ 1{t≥t∗} × φm,n(t). Hence, by the

Fan-Lorentz inequality, an interim probability of the form t 7→ 1{t≥t∗} × φm,n(t) maximizes

revenue. The optimality of the cutoff type θ∗m,n ≡ θ∗ follows because the expected revenue

is quasi-concave in the cutoff θ∗, and because H(ψm,n(θ∗), θ∗) = 0 is the relevant first-order

condition. This condition can be equivalently expressed as

ψm,n(θ∗) v(am,n (θ∗) , θ∗)− c (am,n (θ∗))− 1− F (θ∗)

f(θ∗)
ψm,n(θ∗)

(
∂v(am,n (θ∗) , θ∗)

∂θ

)
= 0 .

Here the probability of getting a unit affects the investment incentives, and hence indirectly

influences the virtual value of every agent. The increase in virtual value (due to an increase

in the probability of obtaining an unit) is more substantial for an agent with a higher type.

Compared to the case where values are exogenous, this increases the advantage of allocating

the units to agents with higher types, conditional on their virtual values being non-negative.

It is thus not revenue maximizing to give the object to a lower type (i.e., withhold it from a

higher type)24.

4.2 When is a Symmetric Mechanism (Not) Optimal?

In this section, we identify a sufficient (and almost necessary) condition under which the

optimal mechanism is symmetric, even if asymmetric mechanisms are allowed.25

Despite all bidders being ex-ante symmetric, and contrasting the case with exogenous

valuations, the seller may find it profitable to employ an asymmetric mechanism26. To see

this, note that, on the one hand, a discriminatory treatment decreases the payment that can

be extracted from bidders with an exogenously given distribution of values. On the other

hand, by arbitrarily choosing one bidder and giving him an advantage over competitors, the

seller can further increase this particular bidder’s investment incentives and shift his post-

investment value upwards. If the investment technology significantly affects values, it may

24We note that, outside the convex supermodular case, the quest for optimality involves other extreme
points.

25For an interesting discussion of symmetric vs asymmetric auctions in a setting with exogenous values
see Deb and Pai (2017).

26The general revenue maximizing mechanism maximizes the expected sum of virtual values under an
asymmetric Border constraint (see also the proof of Theorem 2 in the Appendix)
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be worthwhile for the seller to sacrifice some ex-post rent in exchange for a higher ex-ante

investment level.

The following Theorem identifies the exact condition under which the first effect domi-

nates, rendering symmetric mechanisms overall optimal.

Theorem 2. Let m = 1 and n = 2 and suppose that the environment is convex super-

modular. Let p1, p2 be the interim probabilities with which agent i = 1, 2 receive an object

in a feasible, potentially asymmetric, mechanism. Suppose that p1 and p2 are piecewise

continuously differentiable with a finite number of jumps, and that they induce an optimal

mechanism. If for every θ ∈ [θ, θ]

∂2H(F (θ), θ)

∂p∂θ
> f(θ)

∂2H(F (θ), θ)

∂2p
(15)

then the revenue maximizing mechanism is symmetric, i.e. p1 = p2.27

Roughly speaking, ∂2H
∂p∂θ

(F (θ), θ) measures the seller’s marginal gain from allocating to a

higher type, while f(θ)∂
2H
∂2p

(F (θ), θ) measures convexity - this relates to the seller’s marginal

incentive to replace a symmetric allocation by an asymmetric one. When the former term

is uniformly larger, the seller wants to use the mechanism that is the most efficient, i.e. a

symmetric auction.

Condition 15 is almost necessary: if the unique revenue maximizing mechanism always

allocates the object to the agent with the higher type, provided that his type exceeds a

threshold θ∗, then it must be the case that ∂2H
∂p∂θ

(F (θ), θ) > f(θ)∂
2H
∂2p

(F (θ), θ) on (θ∗, θ].

When this condition fails, the optimal mechanism may be asymmetric.

The proof of Theorem 2 proceeds as follows: We first show that, given an interim proba-

bility with which agent 1 receives the object, the set of feasible interim probabilities for agent

2 is characterized by a majorization condition involving the allocation of agent 1. This step

is based on a generalization of Young’s inequality. Next, we use the Fan-Lorentz Theorem to

characterize the optimal allocation to agent 2 as a function of the allocation to agent 1. This

reduces the problem to the one of finding a solution to an optimization problem involving

only the allocation of agent 1. We solve this problem using the variational Euler-Lagrange

principle.

27We consider piecewise continuously differentiable allocation probabilities with a finite number of jumps
in order to use calculus of variations arguments. It is common to restrict attention to this class of mechanism
when dealing with optimal control problem with jumps in the state variable (see, for example, Seierstad and
Sydsæter (1987), p 196, Theorem 7).
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We next provide two simple examples that illustrate when condition 15 holds, and the

structure of the optimal asymmetric (and hence overall) mechanism when it fails.28

Example 1. Let v(a, θ) = aθ, c(a) = ba
l

l
where l > 1, b > 0 and assume that m = 1 and

n = 2. Recall that the virtual utility H is given here by

H(p, θ) = H(p, θ) = p
l

l−1

(
θ

b

) 1
l−1

K(θ)

where K(θ) = l−1
l
θ − 1−F (θ)

f(θ)
. Thus, condition 15 holds whenever K(θ) is increasing, and F

is concave.

Example 2. Let v(a, θ) = θ + a and c(a) = b
2
a2, where b > 0 and assume that m = 1 and

n = 2. In this case, the virtual utility H is given by

H(p, θ) = p(θ)J(θ) +
1

2b
p2(θ).

Thus, condition 15 is equivalent to requiring that J(θ) − 1
b
F (θ) = θ − 1−F (θ)

f(θ)
− 1

b
F (θ) is

increasing. For example, when types are uniformly distributed on [0, 1], condition 15 holds if

and only if the investment cost is large enough, i.e. b > 1
2
.

In the above example, investment is more costly when b is relatively large, and thus

it plays a smaller role in determining agents’ final value. In this case, the need to elicit

private information dominates. When b is small, agents have strong incentives to invest

and their ex-ante private types contribute less to their final values. The need to increase

agents’ investment incentives becomes more important, and thus a discriminatory mechanism

becomes desirable. If types are uniformly distributed on [0, 1] and if b < 1
2
, then J(θ)− 1

b
F (θ)

is decreasing on [0, 1], i.e., for every θ ∈ [0, 1],

∂2H(F (θ), θ)

∂p∂θ
< f(θ)

∂2H(F (θ), θ)

∂2p
.

In this case, the optimal mechanism is asymmetric. In the proof of Theorem 2, we show

that an optimal allocation rule requires the seller to either : 1) keep the object; or 2) assign

the object efficiently; or 3) assign the object to a randomly selected but pre-determined

agent (referred to as the “favored” agent). Since the two bidders are ex-ante symmetric, it

28Early examples for the optimality of asymmetric mechanisms in settings with entry costs and additive
valuations are in Celik and Yilankaia (2009) and Goeree (2015), respectively.
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is without loss of generality to always appoint agent 1 as the favored agent. If condition

15 holds, the efficient allocation rule performs better than random favoritism. When the

opposite condition holds, similar arguments to those in the proof for Theorem 2 show that

the optimal allocation may consist of the same three regions, but random favoritism performs

better than efficient allocation. Hence, the optimal mechanism requires the seller to allocate

the object to agent 1 as long as his type exceeds a threshold; otherwise, she allocates to agent

2 provided that his type exceeds a (possibly different) threshold. This asymmetric optimal

mechanism can be implemented by a sequential posted-price scheme with favoritism: the

seller first makes a take it-or-leave-it offer to agent 1. If she is turned down, she makes

another take-it-or-leave-it offer to agent 2 (at a possibly different price). Finally, if neither

condition 15 nor its converse hold, the optimal mechanism takes a dynamic, hybrid form

that combines an auction with sequential posted-prices29.

4.3 Restricting Entry

Even if the symmetric optimal mechanism need not be the overall optimal one, the designer

may be constrained by the legal system to use non-discriminatory schemes. By invoking

various technical requirements, minimal standards or financial viability tests, etc., it is often

possible to artificially limit the number of participants in the auction while still treating

symmetrically those bidders that do participate (See Rogerson (1994) for concrete examples

in defence procurement).

In a standard auction with exogenous valuations limiting participation is never beneficial.

But, such a measure may be revenue-improving here: there is an additional positive effect,

caused by the upwards adjustment of investments made by those bidders that are selected

to participate.

Since we characterized the optimal symmetric mechanism for any number of bidders,

we can easily determine the optimal number of bidders in a symmetric mechanism. This

number necessarily depends on the particular parameters and functional forms of the values

and costs.

In the multiplicative case with a single object, the expected revenue is monotonically

increasing in the number of agents under relatively general assumptions (recall also Example

1 where we looked at the case with two agents):

29We refer interested readers to Zhang (2018) for formal proofs and more examples.
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Lemma 3. Assume that m = 1. Assume further that v(a, θ) = aθ, a ∈ A = R+, c(a) = ba
l

l

where l > 1, b > 0 , that K(θ) = l−1
l
θ − 1−F (θ)

f(θ)
is increasing, and that F is concave. Then,

the expected revenue increases in the number of agents n.

In contrast, for the additively separable investment case, restricting entry may be prof-

itable when b is small, i.e., when the investment cost is low. Then, an agent’s ex-ante type

plays a smaller role in determining her final value, and thus the need to encourage invest-

ments dominates the need to select an ex-ante more suitable agent. This observation is

consistent with that in Example 2, i.e., an asymmetric mechanism becomes optimal when

b < 1
2
.

Example 3. Let m = 1, and consider the additively separable environment with c(a) = ba
2

2

where b > 0. Then H(p, θ) = J(θ)p+ p2

2b
. Assuming uniformly distributed types (θ ∼ U [0, 1]),

the expected revenue is

ER(n) =
n− 1

n+ 1
− 2n

n+ 1
θ∗

n+1

+ θ∗
n

+
n

2b

1− θ∗2n−1

2n− 1

where θ∗n ≡ θ∗ solves

2θ∗ − 1 +
(θ∗)n−1

2b
= 0.

If the investment cost is low enough, the revenue sometimes decreases in the number of agents

(c.f. Figure 2). But, the marginal expected revenue

∂ER(n)

∂n
=

2
(

1− θ∗n+1
)

(n+ 1)2 −

(
1− θ∗2n−1

)
2b (2n− 1)2 −

2nθ∗
n+1

n+ 1
ln θ∗ + θ∗

n

ln θ∗ − nθ∗
2n−1

(2n− 1) b
ln θ∗

is always positive for sufficiently high b.30 In that case, the cost of investing becomes pro-

hibitive, and we approach the standard setting without investments where revenue is always

increasing in the number of agents. To see this observe that limb→∞ θ
∗
n = 1/2, and hence

lim
b→∞

∂ER(n)

∂n
=

2
(

1− (0.5)
n+1
)

(n+ 1)2 − 2n (0.5)
n+1

n+ 1
ln 0.5 + (0.5)

n

ln 0.5 > 0.

The above example shows that the celebrated result due to Bulow and Klemperer (1996)

need not hold in our environment. That result states that, in the setting without investments,

30We look here at the natural extension of ER to the real line which allows us to express the derivative
with respect to the number of agents.
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Figure 2: Revenue for the additively separable environments with quadratic costs c(a) = ba
2

2

and θ ∼ U([0, 1]) in the optimal mechanism for b = 1/2 (circles), b = 1/3 (squares), b = 1/8
(diamonds).

the seller is always better-off by attracting an additional bidder and setting a zero reserve

price rather than setting the optimal reserve price when facing one less bidder. Here the

seller may be worse-off if an additional bidder participates and if a symmetric mechanism is

used. In particular, this implies that a symmetric mechanism is sub-optimal if the revenue

is non-monotonic in the number of bidders

5 Implementation via Standard Auctions

In this Section we analyze two widely used, standard auction formats that implement the

symmetric, revenue maximizing allocation in the model with costly investments. We assume

throughout that the environment is convex and super-modular.

5.1 The Uniform-Price Auction

In the uniform (m + 1)−price auction with a reserve price R, all winners (there can be at

most m of them) pay the same price: the maximum between the m+ 1 highest bid and the

reserve. Recall that am,n is the optimal action in a (m + 1)-price auction without reserve

price

am,n(θ) ∈ arg max
a∈A

ψm,n(θ) v(a, θ)− c(a) .

The equilibrium strategy in the uniform-price auction with n bidders, m objects and

reserve price R is straightforward: agents with type above a cut-off type θm,n,R participate
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in the auction and make a non-zero bid. Every type of agent who participates chooses an

optimal action am,n,R that is equal to the action am,n (θ) this type would have chosen in a

(m+ 1)-price auction without reserve:

am,n,R (θ) =

am,n (θ) if θ ≥ θm,n,R

0 else
. (16)

The critical type θm,n,R – the lowest type who makes a non-zero bid – is indifferent be-

tween participating and not participating in the auction, i.e., his investment cost equals the

expected gain from potentially winning an unit in the auction. This type solves:

ψm,n(θm,n,R) [v(am,n (θm,n,R) , θm,n,R)−R] = c (am,n (θm,n,R)) . (17)

The bid submitted by each participating type θ > θm,n,R is equal to the post-investment

value from winning the auction, v(am,n (θ) , θ).

This profile of strategies (actions and bids) constitutes a standard Bayes-Nash equilibrium

of the two-stage investment and bidding game.31 In contrast to the case without investment

where the bid is independent of the number of goods or bidders, here the equilibrium bid

responds both to demand (the number of bidders) and supply (the number of objects) via the

investment decision am,n,R since the value v(am,n,R (θ) , θ) increases in θ and in the number

of objects m, and decreases in the number of bidders n.

Remark. There is a “jump” in the equilibrium bidding function at the reserve price: the

type θm,n,R given in (17) submits a bid that exceeds the reserve price R, or put differently,

there exists an interval of types [θ1, θ2] such that their value when investing optimally exceeds

the reserve price, v(am,n,R (θ) , θ) > R, yet these types refrain from bidding! For a type with

post-investment value just above the reserve price, it is not profitable to invest and participate

at the auction: in the best scenario where his type is among the m highest, he gets close to

zero utility from winning, but loses the initial investment, leading to an overall loss.

Combining these insights with Theorem 1 yields:

Corollary 2. Let θ∗ ≡ θ∗m,n be the optimal cutoff defined in Theorem 1, and let R∗ ≡ R∗m,n,θ∗
solve

R∗ =
1− F (θ∗)

f(θ∗)

(
∂v(am,n (θ∗) , θ∗)

∂θ

)
. (18)

31This profile is not in dominant strategies: conditional on other bids, an agent gets to know whether he
wins or not, and may prefer to change his investment decision.
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Then the uniform-price auction with reserve price R∗ is revenue maximizing among sym-

metric mechanism.

5.2 The Pay-Your-Bid Auction

In the discriminatory Pay-Your-Bid Auction with reserve price, the m agents that submit

the highest bids (conditional on these being above the reserve) get the objects and pay their

bids. Other agents pay nothing. The discriminatory Pay-Your-Bid Auction with a properly

chosen reserve price also implements the revenue maximizing allocation. We first derive

the equilibrium bidding strategies for the more general auction setting where bidders have

preferences that are convex (rather than linear) in the allocation32.

Proposition 5 (Equilibrium of the Discriminatory Auction). Assume that each bidder i with

type θi has preferences over allocations p represented by h(p, θi) where h satisfies all properties

of Lemma 1, and assume that the seller uses a Pay-Your-Bid Auction with reserve price R.

Then the bidding strategies

β(θi) =

R
ψm,n(θ′)
ψm,n(θi)

+ 1
ψm,n(θi)

∫ θi
θ′

∂ψm,n(z)

∂θ

∂h(ψm,n(z),z)

∂p
dz θi ≥ θ

′

0 θi < θ
′

where θ′ = θ
′
m,n,R solves

h (ψm,n(θ′), θ′)

ψm,n(θ′)
= R

constitute a symmetric, pure-strategy Bayes-Nash equilibrium in the Pay-Your-Bid Auction

among n bidders for m units.

For the setting where h is derived from investments recall that

h(ψm,n(θi), θi) := max
ai∈A

pi v(ψm,n(θi), θi)− c(ai) (19)

and hence that
∂

∂pi
h(ψm,n(θi), θi) = v(a∗(ψm,n(θi), θi), θi) (20)

where a∗(ψm,n(θi), θi) is an optimal selection. The rest of the construction follows along the

same lines as for the uniform-price auction. Combining the above insights with Theorem 1

32This derivation is of independent interest since it covers cases where bidders do not have expected utility
preferences. An alternative derivation can be obtained by a payoff equivalence argument.
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yields:

Corollary 3. Let θ∗ ≡ θ∗m,n be the optimal cutoff defined in Theorem 1, and let R∗ ≡ R∗m,n,θ∗
solve

R∗ =
1− F (θ∗)

f(θ∗)

(
∂v(am,n (θ∗) , θ∗)

∂θ

)
. (21)

Then the pay-your-bid auction with reserve price R∗ is revenue maximizing among symmetric

mechanism.

5.3 Comparative Statics

In sharp contrast to the standard setting without investments, the optimal cutoff type and

the optimal reserve price are influenced both by the number of agents (demand) and objects

(supply), and move in opposite directions. From the definition of ψm,n(θ) = φm,n(F (θ)),

we know that ψm,n(θ) is increasing in m and in θ and decreasing in n - these three basic

properties account for:

Proposition 6 (Comparative Statics for the Cutoff Type). Assume that the environment

is convex super-modular (CSM). Then the optimal cutoff type θ∗m,n ≡ θ∗ increases in the

number of agents n and decreases in the number of objects m.

An increase in the number of agents decreases the individual chance of each agent to

receive an object. This, in turn, reduces the individual incentives to invest, the resulting

values, and the revenue that can be obtained from each type. In particular, the type with

zero virtual utility - that determines the optimal cutoff type θ∗ - must be larger than the

analogous type when there are less bidders.33 As they never receive an object, agents with

types below θ∗ choose the action with zero cost. The action chosen by higher types θ > θ∗

can be determined by maximizing their interim utility (given the interim probability with

which they receive an object).

The above result and intuition do not carry over to the optimal reserve price (which is

the same for both the Uniform-Price and the Pay-Your-Bid auctions). To see this, recall

that

R∗m,n,θ∗ ≡ R∗ =
1− F (θ∗m,n)

f(θ∗m,n)

(
∂v(am,n

(
θ∗m,n

)
, θ∗m,n)

∂θ

)
.

The optimal reserve price renders the optimal cut-off type indifferent between participating

and not participating: an increase in the number of agents increases the cutoff type, but, on

33An inverse effect is at work when the number of objects increases.
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the other hand, this type must be compensated for the increase in competition by a reduction

of the reserve price. Inverse effects are at work when the number of objects m is variable.

Proposition 7 (Comparative Statics of the Optimal Reserve Price). Assume that the envi-

ronment is convex super-modular (CSM). Assume further that v is concave in θ, and that F

has an increasing hazard rate with a differentiable density function. If am,n
(
θ∗m,n

)
is decreas-

ing in n (increasing in m), then the optimal reserve price R∗m,n,θ∗ ≡ R∗ decreases in the num-

ber of agents n (increases in the number of objects m).34 Moreover, if v(a, θ) = d(a) + e(θ),

then the optimal reserve price R∗m,n,θ∗ ≡ R∗ decreases in the number of agents n (increases

in the number of objects m).35

This result should be compared to the standard “knife-edge” result obtained in the linear

case, where the reserve price is non-responsive to changes in the number of bidders and

objects: since in that case the optimal cutoff type and the optimal reserve price coincide,

this non-response is indeed suggested by our results that display comparative statics in

opposite directions for the more general model where these two objects do not coincide.

5.3.1 Illustrations

Additively separable investments Both the Uniform-Price and the Pay-Your-Bid auc-

tion with reserve price

R∗m,n=
1− F (θ∗m,n)

f(θ∗m,n)

where θ∗m,n satisfies

θ∗m,n +
g(ψm,n(θ∗m,n))

ψm,n(θ∗m,n)
=

1− F (θ∗m,n)

f(θ∗m,n)

maximize revenue among symmetric mechanisms. If the hazard rate f(θ)
1−F (θ)

is increasing, then

the optimal reserve price increases in the number of objects and decreases in the number of

bidders.

34The condition can be easily checked as it is stated in terms of the model’s primitives, and of the solution
to the individual investment problem

am,n
(
θ∗m,n

)
= arg max

a
ψm,n(θ∗m,n)v

(
a, θ∗m,n

)
− c (a) .

35For particular functional forms (see the multiplicative case below) the comparative static result holds
even though the above assumptions are not satisfied.
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Multiplicative separable investments and monomial cost Assume that the function

K(θ) = l−1
l
θ − 1−F (θ)

f(θ)
is increasing. Then both the Uniform-Price and the Pay-Your-Bid

auctions with reserve price

R∗m,n =
l − 1

l

(
ψm,n (θ∗) (θ∗)l

b

) 1
l−1

where θ∗m,n = θ∗ solves K(θ∗) = 0 maximize revenue among symmetric mechanisms. Since

the critical cutoff θ∗ is here independent of both n and m, the optimal reserve price is

decreasing in the number of bidders n and increasing in the number of objects m.

For example, let n = 10, v(a, θ) = aθ, c(a) = a2

2
, and assume that initial types are

uniformly distributed on [0, 1]. Then H(p, θ) = p2θ
(

3
2
θ − 1

)
. The revenue maximizing

cutoff type is θ∗ = 2
3

independently of m,n. However, when the number of objects on sale

increases from 1 to 9, the optimal reserve price (that induces the cutoff θ∗ = 2
3
) increases

from R∗1,10 ' 0.006 to R∗9,10 ' 0.222. Using R∗9,10 in a standard auction when m = 9 yields

an expected revenue of

10

∫ 1

0.667

[
1− (1− θ)9

]2
θ

(
3

2
θ − 1

)
dθ ' 0.741

If the seller does not adjust the reserve price and continues to use R∗1,10 ' 0.006 < R∗9,10 '
0.222, then the (non-optimal) induced cutoff is θ9,10,R∗1,10

= 0.128, and the expected revenue

is only

10

∫ 1

0.128

[
1− (1− θ)9

]2
θ

(
3

2
θ − 1

)
dθ ' 0.135,

an 80% decrease!

Fixed entry costs Assume that the standard virtual value J(θ) = θ− 1−F (θ)
f(θ)

is increasing.

Then both the Uniform-Price and the Pay-Your-Bid Auctions with reserve price

R∗m,n =
1− F (θ∗m,n)

f(θ∗m,n)

where θ∗m,n solves

ψm,n
(
θ∗m,n

)(
θ∗m,n −

1− F (θ∗m,n)

f(θ∗m,n)

)
= c
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maximize revenue among symmetric mechanisms. If the hazard rate f(θ)
1−F (θ)

is increasing,

then the optimal reserve price is decreasing in the number of agents n and increasing in the

number of objects m.

6 Welfare Maximization

For comparison, we briefly discuss here the welfare maximizing mechanism, and first restrict

attention to symmetric mechanisms.

Symmetric Mechanisms The above developed tools allow us to characterize the wel-

fare maximizing mechanism in this class. Observe that the social welfare in a symmetric

mechanism with allocation rule p is

n

∫
Θ

h(p(θ), θ) f(θ) dθ,

and hence the conditions of Lemma 1 allow us to use Fan-Lorentz insight without any

additional assumptions (since h always satisfies CSM). Hence, the welfare maximizing, sym-

metric, direct mechanism allocates objects to the m agents with the highest values. A simple

indirect implementation of this allocation is an (m + 1)-price auction without reserve price

(see Section 5).

Proposition 8. The welfare maximizing symmetric allocation is implemented by an in-

vestment equilibrium in which agents use the welfare maximizing, symmetric investment

strategies, followed by an (m+ 1) price auction where the objects are allocated to the highest

bidders.

Since an individual investment depends on the probability to get an object, we can

compare the investments in the symmetric revenue maximizing mechanism to those in the

symmetric welfare maximizing one: all types above the revenue maximizing cutoff type θ∗m,n

make the same investments in welfare- and revenue-maximizing mechanisms, while types

below θ∗m,n do not invest in the revenue maximizing mechanism, but make positive investment

in the welfare maximizing one.

General Mechanisms The characterization of the welfare maximizing (potentially) asym-

metric allocation rule is again complex. By using essentially the same argument as for The-

orem 2, we obtain that the symmetric welfare maximizing mechanism for the case with 2
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bidders and 1 object is also the overall optimal one if, for all θ ∈ [θ, θ],

∂2h(F (θ), θ)

∂p∂θ
> f(θ)

∂2h(F (θ), θ)

∂2p
.

If the opposite inequality holds for all θ ∈ [θ, θ], then a sequential posted-price scheme with

favoritism is optimal. Note that a welfare maximizing seller will always allocate the object in

a an optimal sequential posted-price scheme, while a revenue maximizing one may sometimes

keep it.

Despite the difficulty of explicitly characterizing the optimal direct mechanism, it is now

relatively easy to identify an indirect mechanism that implements the optimal allocation.

Consider the Vickrey-Clarke-Groves (VCG) mechanism where each agent pays the expected

externality he imposes on the other agents. In our context, this mechanism corresponds to

a uniform (m + 1) price auction. Clearly, the (m + 1)-price auction, which allocates to the

agents with the m highest ex-post valuations, is welfare-maximizing for every fixed vector

of (potentially asymmetric) investments strategies. To show that it is an overall welfare

maximizing mechanism, we need to show that it also induces the efficient investments as

an equilibrium (see Appendix). This will follow from the insight that an agent gains by

investing exactly when the investment increases the total welfare36.

Proposition 9. The welfare maximizing allocation is implemented by a (potentially asym-

metric) investment equilibrium in which agents use the welfare maximizing investment strate-

gies, followed by an (m+1) price auction where the objects are allocated to the highest bidders.

It is easier to find an implementation for the welfare revenue mechanism than for a revenue

maximizing mechanism because the VCG mechanism aligns the incentives of all agents with

those of the designer, while no mechanism can achieve that for revenue maximization37.

36The logic underlying Proposition 9 is similar to the one in Rogerson (1992), Milgrom (2017) (Propositions
3.5 and 3.6) and Hatfield et. al. (2018) who establish similar results. Here each agent has to take an
investment decision without knowing the other agents types while in Hatfield et. al. agents take decision
contingent on other agents’ types. Milgrom focuses on binary investment strategies.

37It is for exactly this reason that we know that the dynamic VCG mechanism maximizes welfare in
very general dynamic settings (with potentially multidimensional and stochastically evolving types, see
Bergemann and Välimäki (2010)) while a general characterization of the revenue maximizing mechanisms
remains an open question.
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7 Conclusion

We have analyzed revenue maximization in a multi-unit auction framework where agents

make, prior to the auction, costly investments that affect their values. The effective agents’

utility functions become convex in probability of the physical allocation. Our main results

employed a novel maximization approach, focused on a majorization inequality. We first

identified the revenue maximizing allocation within the class of symmetric mechanisms,

and illustrated how it can be implemented via standard auction formats. We then gave a

condition ensuring that the optimal mechanism is symmetric in the two agent case (even

if asymmetric mechanisms are allowed), and also illustrated the main features of optimal

asymmetric mechanisms. Finally, we displayed novel comparative statics about the optimal

reserve price.
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Appendix: Proofs

Proof of Lemma 1: h is convex in p as it is the maximum over functions that are linear

in p. It is increasing in p and θ as p v(a, θ) − c(a) is increasing in p and θ. By assumption,

there exists an action 0 with c(0) = 0 and the cost is always non-negative. Hence, h(0, θ) =

maxa∈Ai
−c(a) = 0. Finally, let a∗(pi, θi) be an optimal selection for the problem given in

(3). As pi v(ai, θi)− c(ai) is super-modular in (ai, θi) we can always pick an optimal selection

a∗(pi, θi) which is non-decreasing in θi (Theorem 4 in Milgrom and Shannon 1994). By the

Envelope Theorem (see Milgrom and Segal (2002) Theorem 2), we obtain that h is absolutely

continuous in p with (weak) derivative

∂

∂pi
h(pi, θi) = v(a∗(pi, θi), θi) . (22)

As a∗(pi, θi) is non-decreasing in θi and v is non-decreasing in ai and θi, the marginal utility

associated with an increase in the probability of receiving the object, ∂
∂pi
h, is non-decreasing

in θi. Thus, h is super-modular in (pi, θi).

Proof of Proposition 1: Denote by p(θi) the interim probability with which agent i receives

an object when she is of type θi and by

u(θi, θ̃i) = h(p(θ̃i), θi)− E
[
y(θ̃i, θ−i)

]
the interim utility of agent i if she is of type θi but she misrepresents her type as θ̃i. Recall

that we only consider here symmetric mechanisms, and thus the functions p and u are

independent of the agents’ identities- we drop the agent’s sub-index i for the remainder of

the proof. Let U(θ) be the indirect utility of an agent of type θ who reports optimally

U(θ) = max
θ̃

u(θ, θ̃).
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Incentive compatibility and the envelope theorem yields that

∂U

∂θ
=
∂u

∂θ
=
∂h

∂θ
.

The almost everywhere existence of ∂h
∂θ

and the following envelope formula follow by Milgrom

and Segal (2002):

U(θ) = U(θ) +

∫ θ

θ

∂h(p(z), z)

∂θ
dz =

∫ θ

θ

∂h(p(z), z)

∂θ
dz.

The last equality follows from the binding participation constraint. The revenue from each

type is then given by

h(p(θ), θ)− U(θ) = h(p(θ), θ)−
∫ θ

θ

∂h(p(z), z)

∂θ
dz

and thus the objective becomes

max
p

∫ θ

θ

(
h(p(θ), θ)−

∫ θ

θ

∂h(p(z), z)

∂θ
dz

)
f(θ)dθ.

Using integration by parts, we obtain:

∫ θ

θ

(∫ θ

θ

∂h(p(z), z)

∂θ
dz

)
f(θ)dθ =

∫ θ

θ

∂h(p(θ), θ)

∂θ
[1− F (θ)]dθ

so that the expected revenue from any agent is only a function of the interim probability p

with which an agent receives an object

∫ θ

θ

(
h(p(θ), θ)− ∂h(p(θ), θ)

∂θ
× 1− F (θ)

f(θ)

)
f(θ)dθ .

Multiplying by the number of agents n yields the result.

Proof of Lemma 2: The result follows from considering the right-hand-side of the Border
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constraint derived in Corollary 4 in Che, Kim & Mierendorff (2013)

∂

∂t

(
n∑
i=0

min{i,m}
(
n

i

)
tn−i(1− t)i

)
=

∂

∂t

(
m−

m−1∑
i=0

(m− i)
(
n

i

)
tn−i(1− t)i

)

= −
m−1∑
i=0

(m− i)
(
n

i

)[
(n− i)tn−i−1(1− t)i − itn−i(1− t)i−1

]
=

m−1∑
i=0

([
(m− i)

(
n

i

)
itn−i(1− t)i−1

]
−
[
(m− i)

(
n

i

)
(n− i)tn−i−1(1− t)i

])

=
m−1∑
i=0

([
(m− i− 1)

(
n

i+ 1

)
(i+ 1)tn−i−1(1− t)i

]
−
[
(m− i)

(
n

i

)
(n− i)tn−i−1(1− t)i

])

=
m−1∑
i=0

tn−i−1(1− t)i
[
(m− i− 1)

(
n

i+ 1

)
(i+ 1)− (m− i)

(
n

i

)
(n− i)

]

=
m−1∑
i=0

tn−i−1(1− t)i
[
(m− i− 1)

(
n

i

)
(n− i)− (m− i)

(
n

i

)
(n− i)

]

= −
m−1∑
i=0

tn−i−1(1− t)i
(
n

i

)
[n− i] = −n

m−1∑
i=0

tn−i−1(1− t)i
(
n− 1

i

)
= −nφm,n(t) .

Finally, we obtain that
∫ 1

0
φm,n(t)dt is given by

n

∫ 1

0

φm,n(t)dt =
n∑
i=0

min{i,m}
(
n

i

)
tn−i(1− t)i

∣∣∣
t=0

= m.

Lemma 4. G(0, t) = 0 for all t ∈ [0, 1]. Furthermore, if the environment is CSM, then

G(q, t), expressed as a function of the quantile, is convex in q and super-modular in (q, t).

Proof of Lemma 4: Note first that

G(0, t) = H(0, F−1(t)) = h(0, F−1(t))− ∂h(0, F−1(t))

∂θ
× 1− t
f(F−1(t))

.

As h(0, θ) = 0 by assumption, it follows that ∂h(0,F−1(t))
∂θ

= 0 and thus that G(0, t) = 0.

In a CSM environment G(q, t) = H(q, F−1(t)) is convex in q since H(p, θ) is convex in

p. Similarly, because H is super-modular, because F−1 is strictly increasing and because

super-modularity is preserved under strictly monotone transformations, we obtain that G is

super-modular.
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Proof of Theorem 1: Since the number of agents and objects is fixed throughout the

proof and thus there is no risk of confusion, we will drop the subindices, and write φ for φm,n

throughout. Let q∗(t) be the interim probability with which an agent of type θ = F−1(t)

receives an object in an optimal symmetric mechanism. Since in a symmetric mechanism no

agent can receive the object with an ex-ante probability greater than m/n, we obtain that∫ 1

0

q∗(t)dt ≤ m

n
=

∫ 1

0

φ(t)dt .

Consequently, there exists a quantile t∗ ∈ [0, 1] such that the ex-ante probability with which

an agent receives an object in the optimal mechanism equals the probability with which

an agent would have a type higher than F−1(t∗) and receive an object under the interim

allocation probability φ : ∫ 1

0

q∗(t)dt =

∫ 1

t∗
φ(t)dt.

Let θ∗ = F−1(t∗) be the type corresponding to the quantile t∗ and let q(t) be the interim

allocation probability corresponding to the allocation rule that assigns a unit to an agent if

and only if her type is above θ∗ and at most m− 1 other agents have a higher valuation, i.e.

q(t) = 1{t≥t∗}φ(t) .

We now argue that q majorizes q∗. By Condition (12) of Proposition 3 we have that for all

t ∈ [0, 1] ∫ 1

t

q∗(z)dz ≤
∫ 1

t

φ(z)dz . (23)

By the definition of the critical quantile t∗ we obtain that∫ 1

t

q∗(z)dz ≤
∫ 1

0

q∗(z)dz =

∫ 1

t∗
φ(z)dz . (24)

Combining, (23) and (24) that for all t ∈ [0, 1]∫ 1

t

q∗(z)dz ≤ min

{∫ 1

t

φ(z)dz,

∫ 1

t∗
φ(z)dz

}
=

∫ 1

t

1t≥t∗φ(z)dz =

∫ 1

t

q(z)dz .

As
∫ 1

0
q(z)dz =

∫ 1

0
q∗(z)dz by the definitions of t∗ and q , we obtain that q majorizes q∗.

Note that, as the environment is CSM, Lemma 4 implies that G satisfies the conditions of
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Proposition 4. By the Fan-Lorentz Theorem (Proposition 4) we thus have that∫ 1

0

G(q∗(t), t)dt ≤
∫ 1

0

G(q(t), t)dt .

But, as q∗ is a revenue maximizing interim probability, the above equation must hold with

equality. Consequently, every mechanism which implements the interim probability q(t) =

1{t≥t∗}φ(t) is revenue maximizing.

Finally, observe that, by Lemma 4, G(0, ·) = 0. Thus, the expected revenue as a function

of t∗ is given by

t∗ 7→ n

∫ 1

0

G
(
1{t≥t∗}φ(t), t

)
dt = n

∫ 1

t∗
G (φ(t), t) dt . (25)

We show now that θ 7→ H(ψ(θ), θ) changes sign at most once, from negative to positive.

Assume that it crosses zero at θ∗ 6= θ, that is H(ψ(θ∗), θ∗) = 0. Then for any θ > θ∗ we have

H(ψ(θ), θ)−H(ψ(θ∗), θ∗) = H(ψ(θ), θ)−H(ψ(θ), θ∗) +H(ψ(θ), θ∗)−H(ψ(θ∗), θ∗) ≥ 0

where the last inequality follows from: (a) the convexity of H which implies that

H(ψ(θ), θ∗)

ψ(θ)
≥ H(ψ(θ∗), θ∗)

ψ(θ∗)
= 0

and hence that

H(ψ(θ), θ∗)−H(ψ(θ∗), θ∗) ≥ 0 .

and (b) the super-modularity of H which implies that

H(ψ(θ), θ)−H(0, θ) ≥ H(ψ(θ), θ∗)−H(0, θ∗)⇐⇒

H(ψ(θ), θ)−H(ψ(θ), θ∗) ≥ H(0, θ)−H(0, θ∗) = 0.

Since F is a monotone transformation and since θ 7→ H(ψ(θ), θ) changes sign at most once,

from negative to positive, so does t 7→ G(φ(t), t) . Since t 7→ G(φ(t), t) changes its sign

at most once, from negative to positive, (25) this function is quasi-concave, and thus the

optimal quantile t∗ satisfies the first order condition G(φ(t∗), t∗) = 0. The result follows

because

G(φ(t∗), t∗) = H(φ(t∗), F−1(t∗)) = H((φ ◦ F )(θ∗), θ∗) = H(ψm,n(θ∗), θ∗).
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This completes the proof of Theorem 1.

Proof of Proposition 6: Let ψ, ψ′ : (0, 1) → (0,∞) be continuous functions with ψ(q) ≤
ψ′(q) for all q ∈ [0, 1]. Recall that θ 7→ H(ψ(θ), θ), and θ 7→ H(ψ′(θ), θ) change sign only

once38, from negative to positive, and define θ∗, θ∗∗ implicitly by

0 = H(ψ(θ∗), θ∗) and 0 = H(ψ′ (θ∗∗) , θ∗∗) .

We have that

0 = H(ψ(θ∗), θ∗) =
H(ψ(θ∗), θ∗)

ψ(θ∗)
≤ H(ψ′(θ∗), θ∗)

ψ′(θ∗)
,

where the last inequality follows from the convexity of H , and from the fact that H(0, ·) = 0.

The last inequality implies that 0 ≤ H(ψ′(θ∗), θ∗) and, since θ 7→ H(ψ′(θ), θ) changes sign

only once, it follows that θ∗ ≥ θ∗∗. As φm,n decreases in n and increases in m point-wise, the

result follows by setting ψ = φm,n ◦ F .

For the proof of Theorem 2, we first need two Lemmas. It follows from standard argu-

ments that the expected revenue in a mechanism inducing the interim probabilities (p1, p2)

and such that participation constraint for the lowest type of each agent binds is given by

∫ θ

θ

H(p1(θ1), θ1)dF (θ1) +

∫ θ

θ

H(p2(θ2), θ2)dF (θ2) .

Lemma 5. Fix any optimal (p∗1, p
∗
2) and let θ∗i = inf{θi ∈ [θ,θ] | p∗i (θi) > 0} be the cutoff

type for bidder i, i = 1, 2. Then:

(1) H(p∗i (θ
∗
i ), θ

∗
i ) ≥ 0

(2) p∗1(θ∗1) ≥ F (θ∗2) and p∗2(θ∗2) ≥ F (θ∗1).

Proof: (1) This follows by similar arguments to those in the proof for Theorem 1, since

otherwise we can improve the mechanism by setting pi(θi) to be zero below θ∗i .

(2) Again, by using similar arguments to those in the proof for Theorem 1, we can show

H(p∗i (θi), θi) > 0

for any θi > θ∗i . Suppose (2) does not hold. Without loss of generality, we can assume

p1(θ∗1) < F (θ∗2). Then, there exists some θ̃1 > θ∗1 such that p∗1(θ1) < F (θ∗2) for any θ∗1 < θ1 ≤
38If H (ψ (θ) , θ) and H (ψ′ (θ) , θ) do not change sign, define θ∗ and θ∗∗ to be the relevant boundary of the

interval
[
θ, θ̄
]
.
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θ̃1. Let

θmax
1 = sup{θ′1 ∈ [θ,θ] | p∗1(θ1) < F (θ∗2)}

We construct another pair of feasible and incentive compatible interim allocation probabil-

ities (p̄1, p̄2), such that p̄(θ1) = F (θ∗2) for all θ∗1 ≤ θ1 ≤ θmax
1 and such that p̄1(θ1) = p∗1(θ1)

otherwise, and p̄2(θ2) = p2(θ2) for all θ2 ∈ [θ,θ].

By convexity of H and by

H(p∗i (θi), θi) > 0

for any θi > θ∗i , we obtain

H(p̄1(θ1), θ1) ≥ H(p∗1(θ1), θ1)

for all θ1 ≥ θ∗1 , with strict inequality on some set of positive measure.39 Thus (p∗1, p
∗
2) is not

optimal, contradicting the earlier assumption.

Lemma 6. Fix any incentive compatible and feasible pair (p1, p2), and define θ0
i = inf{θi ∈

[θ, θ] | pi(θi) > 0}, i = 1, 2. The function η : [θ, θ]→ [θ, θ] defined by

η(θ1) = F−1(p1(θ1))

is non-decreasing. Moreover, p2 is weakly majorized by

p̃2(θ2) =

F (η−1(θ2)) if θ2 ≥ θ0
2

0 otherwise

where

η−1(θ2) ≡

inf{t ∈ [θ, θ] | η(t) ≥ θ2} if η(θ) ≥ θ2

θ otherwise
.

The proof of Lemma 6 crucially relies on the following result by Mitroi and Niculescu

(2011, P4. Lemma 3).

Lemma 7 (Young’s inequality for non-decreasing functions). Let η : [θ, θ]→ [θ, θ] be a non-

decreasing function and let η−1 be its generalized inverse. Then, for every Lebesgue locally

integrable function K : [0,∞)× [0,∞)→ [0,∞) and for every pair of nonnegative numbers

39As H is convex in p it follows that p 7→ H(p,θ)−H(0,θ)
p = H(p,θ)

p is non-decreasing, which implies that

p 7→ H(p, θ) is increasing whenever H(p, θ) > 0.
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A < B,

∫ B

A

(∫ η(s)

η(A)

K(s, w)dw

)
ds+

∫ η(B)

η(A)

(∫ η−1(w)

A

K(s, w)ds

)
dw =

∫ B

A

(∫ η(B)

η(A)

K(s, w)dw

)
ds .

Proof of Lemma 6: The function η = F−1 ◦ p1 and its generalized inverse η−1 are well

defined and non-decreasing since p1 is non-decreasing and since F−1 is well defined (as F

admits a strictly positive density).

Fix a feasible pair (p1, p2). It is without loss of generality to set η(θ) = θ (i.e. p1(θ) = 1)

and η(θ) = θ (i.e. p1(θ) = 0), as this affects p only on a set of measure zero. The relevant

feasibility constraint (see, for example, Maskin and Riley, 1984) requires that, for any t ∈
[θ0

2, θ], ∫ θ

η−1(t)

p1(θ1)dF (θ1) +

∫ θ

t

p2(θ2)dF (θ2) ≤ 1− F (t)F (η−1(t)) . (26)

Take A = η−1(θ) = θ, B = η−1(t) for any t ∈ [θ0
2, θ], and K(s, w) = f(s)f(w). Lemma 7

implies

∫ η−1(t)

η−1(θ)

(
f(s)

∫ η(s)

θ

f(w)dw

)
ds+

∫ t

θ

(
f(w)

∫ η−1(w)

θ

f(s)ds

)
dw =

∫ η−1(t)

η−1(θ)

(
f(s)

∫ t

θ

f(w)dw

)
ds

⇒
∫ η−1(t)

θ

F (η(s))dF (s) +

∫ t

θ

F (η−1(w))dF (w) = F (t)F (η−1(t)). (27)

On the other hand, take A = θ, B = θ, K(s, w) = f(s)f(w) and use the earlier assumption

that η(θ) = θ and η(θ) = θ , Lemma 7 yields

∫ θ

θ

(
f(s)

∫ η(s)

η(θ)

f(w)dw

)
ds+

∫ η(θ)

η(θ)

(
f(w)

∫ η−1(w)

θ

f(s)ds

)
dw =

∫ θ

θ

(
f(w)

∫ η(θ)

η(θ)

f(s)ds

)
dw

⇒
∫ θ

θ

F (η(θ))dF (θ) +

∫ θ

θ

F (η−1(θ))dF (θ) = 1 (28)

Taking the difference between equations (24) and (25) further yields

∫ θ

η−1(t)

F (η(θ1))dF (θ1) +

∫ θ

t

F (η−1(θ2))dF (θ2) = 1− F (t)F (η−1(t)) . (29)
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As p1 = F ◦ η, inequality (26) and equation (29) imply together that, for any t ≥ η(θ0
1),

∫ θ

t

p2(θ2)dF (θ2) ≤
∫ θ

t

F (η−1(θ2))dF (θ2)

i.e. p̃2(θ2) = F (η−1(θ2)) weakly majorizes any feasible p2.

Proof of Theorem 2: Fix any optimal (p∗1, p
∗
2) with cutoff types (θ∗1, θ

∗
2) defined by

θ∗i = inf{θ : pi(θ) > 0} .

Lemma 6 implies that p∗2 is weakly majorized by

p̃2(θ2) =

F (η−1(θ2)) if θ2 ≥ θ∗2

0 otherwise

where η−1 is defined in Lemma 6. We now show that p∗2 is actually majorized by p̃2(θ2).

Suppose not, that is ∫ θ

θ∗2

p∗2(θ2)dF (θ2) <

∫ θ

θ∗2

p̃2(θ2)dF (θ2) .

Then, there exists another feasible p2, such that: (1) p2(θ2) = 0 for θ2 < θ∗2 and (2) p2(θ2) ≥
p∗2(θ2) for any θ2 ≥ θ∗2 with strict inequality on some set of positive measure. By the convexity

of H and since

H(p∗2(θ2), θ2) > 0

for any θ2 > θ∗2 (see Lemma 5), we obtain

H(p2(θ2), θ2) > H(p∗2(θ2), θ2)

for any θ2 ≥ θ∗2 with strict inequality on some set of positive measure. Thus, p∗2 is not

optimal, contradicting the earlier assumption, and any optimal p∗2 must be majorized by

p̃2(θ2) as desired.

We can now apply the Fan-Lorentz Theorem to the second element of the revenue

∫ θ

θ

H(p1(θ1), θ1)dF (θ1) +

∫ θ

θ

H(p2(θ2), θ2)dF (θ2) .

(seen as a functional in p2) and conclude that p̃2 is optimal. As p1 and p̃2 are completely
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determined by η, we can obtain an upper bound on the seller’s expected revenue as a function

of η. It is without loss of generality to set η(θ) = θ (as this affects η only on a set of measure

zero). The bound on expected revenue is given by

∫ θ

θ∗1

H(p1(θ1), θ1)dF (θ1) +

∫ θ

θ∗2

H(p2(θ2), θ2)dF (θ2)

≤
∫ θ

θ∗1

H(F (η(θ1)), θ1)dF (θ1) +

∫ η(θ)

η(θ∗1)

H(F (η−1(θ2)), θ2)dF (θ2)

where we used θ∗2 ≥ η(θ∗1) (Lemma 5 (2)) to obtain the inequality. To show the optimal

mechanism is symmetric, it suffices to show that, optimally, η(θ) = θ for any θ > θ∗1.

Note that, as p∗1 is by assumption piecewise differentiable with finitely many jumps, η∗ is

also piecewise differentiable with finitely many jumps. Fixing any optimal η∗ there are two

possibilities:

(1) There exists an interval [x, y], x > θ∗1, on which η∗ does not jump and η∗ is strictly

increasing, i.e. η∗′(θ) > 0 . Then we have∫ y

x

H(F (η∗(θ1)), θ1)dF (θ1) +

∫ η∗(y)

η∗(x)

H(F (η∗−1(θ2)), θ2)dF (θ2)

=

∫ y

x

H(F (η∗(θ)), θ)dF (θ) +

∫ y

x

H(F (θ), η∗(θ))dF (η∗(θ))

=

∫ y

x

[H(F (η∗(θ)), θ)f(θ) +H(F (θ), η∗(θ))f(η∗(θ))η∗′(θ)] dθ.

Define

Ĥ(θ, η, η′) ≡ H(F (η(θ)), θ)f(θ) +H(F (θ), η(θ))f(η(θ))η′(θ).

Since η∗(θ) is optimal, it must be the solution to the following calculus of variation

problem.

max
η
I(η) ≡

∫ y

x

Ĥ(θ, η, η′)dθ

subject to the inequality constraint η∗′(θ) ≥ 0, and subject to the boundary conditions

η(x) = η∗(x) and η(y) = η∗(y).

This is a relatively standard calculus of variation problem (see, for example, Sagan (1992),

Chapter 2.3). Since the constraint is not binding anywhere on (x, y), a necessary condition

for η∗(θ) being optimal is that it solves the Euler-Lagrange condition almost everywhere on

42



(x, y). The Euler-Lagrange condition requires that, for all θ,

∂Ĥ(θ, η(θ), η′(θ))

∂η
− d

dθ

∂Ĥ(θ, η(θ), η′(θ))

∂η′
= 0

where

∂Ĥ

∂η
=
∂H

∂p
(F (η(θ)), θ)f(η(θ))f(θ) +

∂H

∂θ
(F (θ), η(θ))f(η(θ))η′(θ))

+ f ′(η(θ))H(F (θ), η(θ))η′(θ)

and where

d

dθ

∂Ĥ

∂η′
=

d

dθ
H(F (θ), η(θ))f(η(θ))

=
∂H

∂p
(F (θ), η(θ))f(θ)f(η(θ)) +

∂H

∂θ
(F (θ), η(θ))f(η(θ))η′(θ))+

f ′(η(θ))H(F (θ), η(θ))η′(θ).

Thus, we obtain the following necessary condition:

∂Ĥ(θ, η(θ), η′(θ))

∂η
− d

dθ

∂Ĥ(θ, η(θ), η′(θ))

∂η′
= 0

⇔ ∂H

∂p
(F (η(θ)), θ) =

∂H

∂p
(F (θ), η(θ)) .

η(θ) = θ is the unique solution of the above Euler-Lagrange equation since we assumed

f(θ)
∂2H

∂2p
(F (θ), θ) <

∂2H

∂p∂θ
(F (θ), θ)

for any θ in [θ, θ], which implies that the derivative of ∂H
∂p

(F (η(θ)), θ) with respect to η is

always smaller that the derivative of ∂H
∂p

(F (θ), η(θ)) with respect to η. This establishes that

on any interval [x, y] where η∗ is continuous and strictly increasing, η∗ is the identity.

(2) There exists an interval [x′, y′) such that η∗ is constant on that interval, i.e. η∗(θ) = k∗

for any θ ∈ [x′, y′). We prove that this possibility cannot arise in 2 steps:

Step 1: We show that either η∗(x′−) = k∗ or η∗(y′+) = k∗. For any k ∈ (η(x′−), η(y′+)),

consider the non-decreasing function ηk(θ) such that ηk(θ) = k for any θ ∈ (x′, y′) and
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ηk(θ) = η∗(θ) otherwise. If the seller uses ηk, then her revenue can be written as∫ y′

x′
H(F (ηk(θ1)), θ1)dF (θ1) +

∫ η(y′+)

η(x′−)

H(F ((ηk)−1(θ2)), θ2)dF (θ2) +M

=

∫ y′

x′
H(F (k), θ)dF (θ) +

∫ k

η∗(x′−)

H(F (x′), θ)dF (θ) +

∫ η∗(y′+)

k

H(F (y′), θ)dF (θ) +M

where M is some term independent of k. Taking the derivative of the above expression with

respect to k yields

f(k)

∫ y′

x′

∂H

∂p
(F (k), θ)dF (θ) + f(k) [H(F (x′), k)−H(F (y′), k)]

= f(k)

{∫ y′

x′

[
∂H

∂p
(F (k), θ)− ∂H

∂p
(F (θ), k)

]
dF (θ)

}
.

A necessary condition for η∗(θ) = ηk
∗
(θ) being optimal is∫ y′

x′

[
∂H

∂p
(F (k∗), θ)− ∂H

∂p
(F (θ), k∗)

]
dF (θ) = 0.

Observe that
∂H

∂p
(F (k∗), θ)− ∂H

∂p
(F (θ), k∗)

equals 0 at θ = k∗ and is increasing in θ as we have assumed ∂H
∂p∂θ

(F (θ), θ) > ∂H
∂2p

(F (θ), θ)f(θ).

Then ∫ y′

x′

[
∂H

∂p
(F (k∗), θ)− ∂H

∂p
(F (θ), k∗)

]
dF (θ) = 0

implies x′ < k∗ < y′ and∫ k∗

x′

[
∂H

∂p
(F (k∗), θ)− ∂H

∂p
(F (θ), k∗)

]
dF (θ) < 0 .

Then, for any s ∈ (max{x′, η∗(x′−)}, k∗], we construct ηs such that ηs(θ) = s for θ ∈ (x′, k∗)
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and ηs(θ) = η∗(θ) otherwise. If the seller uses ηs, then her revenue can be written as∫ k∗

x′
H(F (ηs(θ1)), θ1)dF (θ1) +

∫ k∗

η(x′−)

H(F ((ηs)−1(θ2)), θ2)dF (θ2) +M1

=

∫ k∗

x′
H(F (s), θ)dF (θ) +

∫ s

η∗(x′−)

H(F (x′), θ)dF (θ) +

∫ k∗

s

H(F (s), θ)dF (θ) +M1

where M1 is some term independent of s. Taking the derivative of the above expression with

respect to s yields

f(s)

∫ k∗

x′

[
∂H

∂p
(F (s), θ)− ∂H

∂p
(F (θ), s)

]
dF (θ).

Recall that we have shown∫ k∗

x′

[
∂H

∂p
(F (k∗), θ)− ∂H

∂p
(F (θ), k∗)

]
dF (θ) < 0,

and hence there exists ε > 0 such that∫ k∗

x′

[
∂H

∂p
(F (s), θ)− ∂H

∂p
(F (θ), s)

]
dF (θ) < 0

for any s ∈ (k∗ − ε, k∗). Thus ηk
∗−ε is strictly more profitable to the seller than η∗ = ηk

∗
,

contradicting the assumption that η∗ is optimal. Hence, we have shown that if η∗ ≡ k∗ is

constant on an interval [x′, y′) it must be that η∗ is either left-continuous at x′ or right-

continuous at y′. Below we assume that η∗ is left-continuous at x′ - the proof for the other

case is essentially the same.

Step 2: Suppose there exists an interval [x′, y′) such that η∗(θ) = k∗ if and only if θ ∈ [x′, y′).

By assumption, there must exist z′ < x′ such that η∗ is strictly increasing on (z′, x′). Then

Step 1 and case (1) together imply k∗ = η∗(x′−) = x′. It also follows that η∗(y′) > k∗. For

any r ∈ [x′, y′], we construct ηr such that ηr(θ) = min{y′, η∗(y′)} on [r, y′) and ηr(θ) = η∗(θ)

otherwise. By construction, if η∗ is non-decreasing, then ηr is also non-decreasing.
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If the seller uses ηr instead of η∗, the change in the expected revenue equals

4(r) =

∫ y′

r

H(F (min{y′, η∗(y′)}, θ)dF (θ) +

∫ min{y′,η∗(y′)}

η∗(x′)

H(F (r), θ)dF (θ)

−
∫ y′

r

H(F (x′), θ)dF (θ)−
∫ min(y′,η∗(y′))

η∗(x′)

H(F (y′), θ)dF (θ)

Taking the derivative of the above expression with respect to r yields

4′(r) = f(r)

∫ min{y′,η∗(y′)}

x′

[
∂H(F (r), θ)

∂p
− ∂H(F (θ), r)

∂p

]
dF (θ)

By similar arguments as used in Step 1, it can be verified that 4(y′) = 0 and 4′(r) < 0 for

r = y′. Hence there exists r ∈ [x, y′) such that 4(r) > 0, and thus that η∗ is not optimal.

By (1) and (2), we now conclude that, if it exists, the unique optimal solution to the

revenue maximizing problem is η∗(θ) = θ for any θ > θ∗1.

Proof of Proposition 9: Let (a∗, x∗) be the (potentially assymetric) welfare investment

and allocation profile, absent any incentive constraints. We show that this profile can be

implemented as an equilibrium of the game where agents first chose investments and then

participate in an m+1-price auction. Clearly, allocating to the agents with the m highest ex-

post valuations v(ai, θi) is welfare-maximizing for every fixed vector of investments strategies

a1, . . . , an : R+ → A. Thus, the equilibrium of the m+1-price auction where each agents bids

their value implements the welfare-maximizing allocation of the object for any investment

strategy profile. We are thus left to show that we can support the efficient investments as

an equilibrium. Let x∗(v1, . . . , vn) be the rule that allocates objects to the agents with the

m-highest ex-post values, and let x∗−i the rule that allocates objects to the agents excluding

i that have the m highest ex-post values. For type profile θ ∈ Rn
+ and investment profile

a ∈ An, let

W (a, θ) =
∑
j∈N

x∗j(v1(a1, θ1), . . . , vn(an, θn))vj(aj, θj)

be the ex-post realized welfare from the allocation (excluding the cost of investment!) and

let

W−i(a−i, θ−i) =
∑
j 6=i

(x∗−i)j(v1(a1, θ1), . . . , vn(an, θn))vj(aj, θj)

be the ex-post welfare in the situation where the object cannot be allocated to agent i.

Recall that a∗ is the (potentially asymmetric) welfare-maximizing profile of investment
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strategies. If agent i makes an investment ai ∈ A and all other agents use the welfare

maximizing investment strategies a∗−i, then i′s expected utility in the VCG mechanism is

given by

Eθ−i

[
W (ai, a

∗
−i(θ−i), θ)−W−i(a∗−i(θ−i), θ−i)− c(ai) | θi

]
.

As both the second summand above and
∑

j 6=i c(a
∗
j(θj)) are independent of ai, we obtain

that a∗i (θ) is an equilibrium investment strategy if and only if

a∗i (θ) ∈ arg max
ai∈A

E

[
W (ai, a

∗
−i(θ−i), θ)− c(ai)−

∑
j 6=i

c(a∗j(θj)) | θi

]
.

which is satisfied since a∗ was chosen to be the welfare-maximizing investment profile.

Online Appendix: Not for Publication

Proof of Proposition 5: Agent i’s utility in a symmetric equilibrium where all biders but

i use strategy β and where i submits a bid b is given by

h
(
ψm,n(β−1 (b)), θi

)
− ψm,n(β−1 (b))b . (30)

Taking the derivative with respect to b yields that[
∂h (ψm,n(β−1 (b)), θi)

∂p
− b
]
∂ψm,n(β−1 (b))

∂θ

∂β−1 (b)

∂b
− ψm,n(β−1 (b)).

Plugging b = β(θ) (as it is optimal for agent i to make the equilibrium bid) yields[
∂h (ψm,n(θi), θi)

∂p
− β(θi)

]
∂ψm,n(θi)

∂θ

1

β′(θi)
− ψm,n(θi) = 0 .

Rearranging for β′ yields the following differential equation:

β′(θi) =
∂ψm,n(θi)

∂θ

1

ψm,n(θi)

[
∂h (ψm,n(θi), θi)

∂p
− β(θi)

]
. (31)

Since θi 7→ ∂ψm,n(θi)

∂θ
1

ψm,n(θi)
is continuous and since the right–hand side of (31) is uniformly

Lipschitz in β, the O.D.E (31) admits a unique solution for every initial value. Set θ′ ≡
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θ′m,n,R to be the solution to the equation

h (ψm,n(θ′), θ′)

ψm,n(θ′)
= R .

If we set β(θ′) = R then the agent with type θ′ is, by construction, indifferent between

bidding R and bidding zero. For all higher types θ ∈ (θ′, θ] we extend the bidding function

by solving the ODE (31). Since (31) is linear, we obtain the explicit solution

β(θi) = Rψm,n(θ′)

ψm,n(θi)
+

1

ψm,n(θi)

∫ θi

θ′

∂ψm,n(z)

∂θ

∂h (ψm,n(z), z)

∂p
dz

To verify, take the derivative to obtain

β′(θi) = −∂ψm,n(θi)

∂θ

ψm,n(θ′)

(ψm,n(θi))
2R−

∂ψm,n(θi)

∂θ

1

(ψm,n(θi))
2

∫ θi

θ′

∂ψm,n(z)

∂θ

∂h (ψm,n(z), z)

∂p
dz

+
∂ψm,n(θi)

∂θ

1

ψm,n(θi)

∂h (ψm,n(θi), θi)

∂p

= −∂ψm,n(θi)

∂θ

β(θi)

ψm,n(θi)
+
∂ψm,n(θi)

∂θ

1

ψm,n(θi)

∂h (ψm,n(θi), θi)

∂p

=
∂ψm,n(θi)

∂θ

1

ψm,n(θi)

[
∂h (ψm,n(θi), θi)

∂p
− β(θi)

]
.

We first need to show that the solution β of (31) is increasing for all θi ≥ θ′. Observe

that:

β′ ≥ 0⇔ Rψm,n(θ′)
1

ψm,n(θi)
+

1

ψm,n(θi)

∫ θi

θ′

∂ψm,n(z)

∂θ

∂h (ψm,n(z), z)

∂p
dz ≤ ∂h (ψm,n(θi), θi)

∂p

Plugging the expression for R, this becomes:

h (ψm,n(θ′), θ′)

ψm,n(θi)
+

1

ψm,n(θi)

∫ θi

θ′

∂ψm,n(z)

∂θ

∂h (ψm,n(z), z)

∂p
dz ≤ ∂h (ψm,n(θi), θi)

∂p
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By super-modularity, we can bound the left hand side above:

h (ψm,n(θ′), θ′)

ψm,n(θi)
+

1

ψm,n(θi)

∫ θi

θ′

∂ψm,n(z)

∂θ

∂h (ψm,n(z), z)

∂p
dz

≤ h (ψm,n(θ′), θ′)

ψm,n(θi)
+

∂h(ψm,n(θi),θi)

∂p

ψm,n(θi)
(ψm,n(θi)− ψm,n(θ′)

=
h (ψm,n(θ′), θ′)

ψm,n(θi)
+
∂h (ψm,n(θi), θi)

∂p
− ψm,n(θ′)

ψm,n(θi)

∂h (ψm,n(θi), θi)

∂p

Thus, we need to show that:

h (ψm,n(θ′), θ′)

ψm,n(θi)
+
∂h (ψm,n(θi), θi)

∂p
− ψm,n(θ′)

ψm,n(θ)

∂h (ψm,n(θi), θi)

∂p
≤ ∂h (ψm,n(θi), θi)

∂p
⇐⇒

1

ψm,n(θi)
[h (ψm,n(θ′), θ′)− ψm,n(θ′)

∂h (ψm,n(θi), θi)

∂p
] ≤ 0⇐⇒

h (ψm,n(θ′), θ′)

ψm,n(θ′)
≤ ∂h (ψm,n(θi), θi)

∂p

The last inequality holds by the convexity and super-modularity of h.

We need to verify that it is indeed optimal for the type θi to bid β(θi). We start by

considering types θi ∈ [θ′, θ]. By construction, the bid β(θi) satisfies the agent’s first order

condition. If the agent deviates by making the equilibrium bid that is optimal for type θ̂ ,

her utility equals

h
(
ψm,n(θ̂), θi

)
− ψm,n(θ̂)β(θ̂) . (32)

The derivative with respect to θ̂ is∂h
(
ψm,n(θ̂), θi

)
∂p

− β(θ̂)

 ∂ψm,n(θ̂)

∂θ
− ψm,n(θ̂)β′(θ̂)

=

∂h
(
ψm,n(θ̂), θ̂

)
∂p

− β(θ̂)

 ∂ψm,n(θ̂)

∂θ︸ ︷︷ ︸
ψm,n(θ̂)β′(θ̂)

−ψm,n(θ̂)β′(θ̂) +

∂h
(
ψm,n(θ̂), θi

)
∂p

−
∂h
(
ψm,n(θ̂), θ̂

)
∂p



=
∂h
(
ψm,n(θ̂), θi

)
∂p

−
∂h
(
ψm,n(θ̂), θ̂

)
∂p

. (33)

(at the last step we used the fact that β solves the ODE (31). As h is super-modular,
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expression (33) is increasing, and changes its sign from positive to negative at θi = θ̂. Thus,

the agent’s objective (32) is concave, and is maximized at θi = θ̂. An agent of type θi ∈ [θ′, θ]

thus prefers to make the bid β(θi) over any other bid in [β(θ′), β((θ)] = [R, β(θ)]. Clearly it

can never be optimal for the agent to make a bid higher than β(θ) as a bid of β(θ) would

already ensure that she wins and pays strictly less. It remains to verify that the agent does

not want to make a bid of zero: observe that the agent could deviate to bid R, which would

yield a utility higher than the equilibrium utility of the type θ′. It thus suffices to verify that

the equilibrium utility of the type θ′ is non-negative. This type’s equilibrium utility is given

by

h (ψm,n(θ′), θ′)− ψm,n(θ′)R ,

that, by the definition of the reserve price, equals zero. Finally, we verify that no type

θi ∈ [θ, θ′] wants to deviate by making a non-zero bid. To see this, note that by deviating to

any bid in [R, β(θ)] such a type would get a utility which is lower than the utility the type

θ′ gets from making this bid. But, by construction, the optimal bid of type θ
′

equals R and

yields her a utility of zero. This implies that the utility resulting from any bid greater zero

must be less than zero for all lower types.

Proof of Proposition 7: Proof: We treat here m and n as real variables. As the natural

numbers are a subset of the reals, it is clear that the monotonicity properties also hold on

the domain of the natural numbers.

Taking the revenue’s derivative of (18) with respect to n we get

∂R∗

∂n
=
∂v(am,n

(
θ∗m,n

)
, θ∗m,n)

∂θ

∂

∂θ

1− F (θ∗m,n)

f(θ∗m,n)

∂θ∗m,n
∂n

+
1− F (θ∗m,n)

f(θ∗m,n)

∂2v(am,n
(
θ∗m,n

)
, θ∗m,n)

∂θ2

∂θ∗m,n
∂n

+
1− F (θ∗m,n)

f(θ∗m,n)

∂2v(am,n
(
θ∗m,n

)
, θ∗m,n)

∂θ∂a

∂a′m,n
(
θ∗m,n

)
∂n

+
1− F (θ∗m,n)

f(θ∗m,n)

∂2v(am,n
(
θ∗m,n

)
, θ∗m,n)

∂θ∂a

∂am,n
(
θ∗m,n

)
∂θ

∂θ∗m,n
∂n

=
∂v(am,n

(
θ∗m,n

)
, θ∗m,n)

∂θ

∂

∂θ

1− F (θ∗m,n)

f(θ∗m,n)

∂θ∗m,n
∂n

+
1− F (θ∗m,n)

f(θ∗m,n)

∂2v(am,n
(
θ∗m,n

)
, θ∗m,n)

∂θ2

∂θ∗m,n
∂n

+
1− F (θ∗m,n)

f(θ∗m,n)

∂2v(am,n
(
θ∗m,n

)
, θ∗m,n)

∂θ∂a

[
∂am,n

(
θ∗m,n

)
∂n

+
∂am,n

(
θ∗m,n

)
∂θ

∂θ∗m,n
∂n

]
< 0

where the last inequality follows from the increasing hazard rate assumption ( ∂
∂θ

1−F (θ)
f(θ)

< 0 ),

from Proposition 6 which implies
∂θ∗m,n

∂n
> 0, from the assumed concavity of v in θ, and from
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the assumed monotonicity of am,n
(
θ∗m,n

)
in n. The proof that ∂R∗

∂m
> 0 is similar.

Proof of Lemma 3: The expected revenue is given by

R = n

∫ 1

θ∗
(p)

l
l−1

(
θ

b

) 1
l−1

K(θ)f (θ) dθ

where l−1
l
θ∗ − 1−F (θ∗)

f(θ∗)
= 0 and where p = F n−1 (θ).

The derivative of the expected revenue with respect to n is

∫ 1

θ∗
F

(n−1)l
l−1 (θ)

(
θ

b

) 1
l−1

K(θ)f (θ) dθ + n

∫ 1

θ∗
F

(n−1)l
l−1 (θ)

l

l − 1
lnF (θ)

(
θ

b

) 1
l−1

K(θ)f (θ) dθ

=

∫ 1

θ∗
K(θ)

(
θ

b

) 1
l−1

F
(n−1)l
l−1 (θ)

[
1 + n

l

l − 1
lnF (θ)

]
f (θ) dθ

This can be written as:

∫ 1

θ∗
K(θ)

1

F
1

l−1 (θ)

(
θ

b

) 1
l−1

F
(n−1)l
l−1 (θ)

[
1 + n

l

l − 1
lnF (θ)

]
F

1
l−1 (θ) f (θ) dθ

Because 1+n l
l−1

lnF (θ) changes sign only once as a function of θ , from negative to positive,

and by the concavity of F and monotonicity of K, the function K(θ)
(

θ
F (θ)

) 1
l−1

is positive

and increasing. Thus, it is sufficient to show that40

∫ 1

θ∗
F

(n−1)l
l−1 (θ)

[
1 + n

l

l − 1
lnF (θ)

]
F

1
l−1 (θ) f (θ) dθ ≥ 0.

Define a distribution S (θ) = F
l

l−1 (θ) and let s (θ) = l
l−1
F

1
l−1 (θ) be its density. Using the

40Assume k(·) changes sign once at x∗ ∈ [a, b] from negative to positive and assume that d(·) is positive

increasing on the interval [a, b]. Then
∫ b
a
k(t)dt ≥ 0 implies

∫ b

a

k(t)d(t)dt =

∫ x

a

k(t)d(t)dt+

∫ b

x

k(t)d(t)dt ≥ d(x)

∫ x

a

k(t)dt+ d(x)

∫ b

x

k(t)dt = d(x)

∫ b

a

k(t)dt ≥ 0
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new notation we have∫ 1

θ∗
Sn−1 (θ) [1 + n lnS (θ)] s (θ) dθ =

∫ 1

θ∗
Sn−1 (θ) s (θ) dθ +

∫ 1

θ∗
Sn−1 (θ)n lnS (θ) s (θ) dθ

=

∫ 1

θ∗
Sn−1 (θ) s (θ) dθ + Sn (θ) lnS (θ) |1θ=θ∗ −

∫ 1

θ∗
Sn (θ)

s (θ)

S (θ)
dθ = −Sn (θ∗) lnS (θ∗) > 0 .

7.1 Sufficient conditions for CSM Environments

When does our ”virtual utility” function

H(p, θ) = h(p, θ)− hθ(p, θ)×
1− F (θ)

f(θ)

satisfies the conditions in the Fan-Lorentz Theorem, i.e. when is the environment convex

super-modular? We have

∂2H

(∂p)2
=

∂2h

(∂p)2
− ∂3h

∂θ(∂p)2
(
1− F (θ)

f(θ)
)

Since ∂2h
(∂p)2

≥ 0 by assumption and because1−F (θ)
f(θ)

≥ 0, a sufficient condition for ∂2H
(∂p)2

≥ 0 is
∂3h

∂θ(∂p)2
≤ 0. We also have

∂2H

∂θ∂p
=

∂2h

∂θ∂p
− ∂2h

∂θ∂p

d

dθ
(
1− F (θ)

f(θ)
)− ∂3h

(∂θ)2∂p
(
1− F (θ)

f(θ)
) =

∂2h

∂θ∂p
(1− d

dθ
(
1− F (θ)

f(θ)
))− ∂3h

(∂θ)2∂p
(
1− F (θ)

f(θ)
).

A sufficient conditions for ∂2H
∂θ∂p
≥ 0 is an increasing failure rate (IFR), i.e. d

dθ
( f(θ)

1−F (θ)
) ≥ 0

and ∂3h
(∂θ)2∂p

≤ 0. To conclude sufficient conditions are :

1.
∂3h

∂θ(∂p)2
≤ 0,

∂3h

(∂θ)2∂p
≤ 0

2. IFR

These conditions can be further decomposed into standard sufficient conditions on the func-

tions v and c. The above derivations can be compared to the classical treatment (see Gues-

nerie and Laffont (1984) and Fudenberg and Tirole (1991) Section 7.3.2). They only consider

a single agent and hence need not consider the resource constraint that is our main concern
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here. Their sufficient conditions are:

1′.
∂3h

∂θ(∂p)2
≥ 0,

∂3h

(∂θ)2∂p
≤ 0

2′. IFR

The difference to our conditions is due to their assumption that the valuation is concave

in the allocation. Thus, they initially assume ∂3h
(∂p)2

≤ 0, and having ∂3h
∂θ(∂p)2

≥ 0 ensures that

their welfare function is concave so that the First Order Approach can be employed.
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